...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Utilization of electron-beam irradiation under atomic-scale chemical mapping for evaluating the cycling performance of lithium transition metal oxide cathodes
【24h】

Utilization of electron-beam irradiation under atomic-scale chemical mapping for evaluating the cycling performance of lithium transition metal oxide cathodes

机译:原子尺化学映射下电子束辐射的利用评价锂过渡金属氧化物阴极循环性能

获取原文
获取原文并翻译 | 示例
           

摘要

With the development of high-performance lithium ion batteries, scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDX) has been widely applied as a high-precision technique to investigate the atomic-level features of doped lithium transition metal oxide cathodes. However, the corresponding effect of the high-energy electron beam irradiation during STEM has been largely ignored, even though it often causes structural modification or breakage of the ionic bonds in the material, leading to the misinterpretation of the atomic structure. Therefore, to improve the accuracy of atomic-level observation, it is important to develop a consolidated methodology that can specify the critical parameters that trigger the effect of the high-energy electron beam. To achieve this, the electron beam-induced radiolysis phenomena of layer-structured lithium mixed-transition metal oxides (LiNi0.6Co0.2Mn0.2O2, NCM) were characterized by STEM-EDX at different accelerating voltages. The results revealed that the susceptibility of the materials to electron beam irradiation significantly depends on the energy of the accelerated electrons; a 200 kV electron beam triggered cation migration that resulted in structural changes, while the original structure was retained for a prolonged duration under an 80 kV electron beam, thus securing the true structural information of the material. Remarkably, a small amount of Ti doping into NCM significantly increased its tolerance to the electron beam. Density functional theory calculations indicated that the high resistance of the Ti-doped NCM to the electron beam can be attributed to enhanced conductivity due to the semiconductor-metal transition. Furthermore, there was a reliable correlation between the observed phenomenon and the cycling performance of the materials, thus suggesting that STEM probe-based monitoring at atomic resolution can be exploited as an indicator of battery stability and life.
机译:随着高性能锂离子电池的发展,扫描透射电子显微镜(STEM)与能量色散X射线光谱(EDX)相结合作为一种高精度技术被广泛应用于研究掺杂锂过渡金属氧化物阴极的原子水平特征。然而,STEM过程中高能电子束辐照的相应效应在很大程度上被忽略,尽管它通常会导致材料中离子键的结构修改或断裂,从而导致对原子结构的误解。因此,为了提高原子水平观测的准确性,重要的是开发一种统一的方法,可以指定触发高能电子束效应的关键参数。为了实现这一点,在不同的加速电压下,用STEM-EDX对层状结构的锂混合过渡金属氧化物(LiNi0.6Co0.2Mn0.2O2,NCM)的电子束诱导辐解现象进行了表征。结果表明,材料对电子束辐照的敏感性显著依赖于加速电子的能量;200千伏电子束触发阳离子迁移,导致结构变化,而原始结构在80千伏电子束下长时间保留,从而确保材料的真实结构信息。值得注意的是,少量Ti掺杂到NCM中显著提高了其对电子束的耐受性。密度泛函理论计算表明,掺钛NCM对电子束的高电阻可归因于半导体-金属转变导致的导电性增强。此外,观察到的现象与材料的循环性能之间存在可靠的相关性,因此表明基于STEM探针的原子分辨率监测可以作为电池稳定性和寿命的指标。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号