首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >A modified bubble dynamics model for predicting bubble departure diameter on micro-pin-finned surfaces under microgravity
【24h】

A modified bubble dynamics model for predicting bubble departure diameter on micro-pin-finned surfaces under microgravity

机译:一种改进的气泡动力学模型,用于预测微销偏移直径在微销翅片表面下的微销偏移下

获取原文
获取原文并翻译 | 示例
           

摘要

The micro-pin-finned structure can effectively enhance the boiling heat transfer both in terrestrial gravity on earth and microgravity environments in space, while the mechanism of boiling heat transfer is very complex. By the observation of the bubble behaviors such as growth, coalescence and departure, the dynamic process is analyzed. For the smooth surface, the traditional bubble dynamics model could accurately predict the bubble departure diameter; while for the micro-pin-finned structure surface under microgravity environment, there was a relatively large deviation for this model. The reason is that the traditional bubble dynamics model for the smooth surface was originally established with the perspective of force balance analysis of single bubble, which did not consider the strong interaction among the bubbles on the micro-pin-finned surfaces. According to the experimental phenomena under micro gravity environment, there are several small bubbles sitting under a primary bubble on the micro-pin finned surface. The interaction between the small bubbles and the primary bubble prevents the departure of the primary bubble. A modified bubble dynamics model based on force balance is proposed to predict bubble departure diameter well on the micro-pin-finned surface, which considers the role of drag force of small bubbles beneath the primary bubble. (C) 2017 Elsevier Ltd. All rights reserved.
机译:微引脚翅片结构可以有效地增强了空间地球和微匍匐环境的地面重力的沸腾热传递,而沸腾热传递的机理非常复杂。通过观察泡沫行为,例如生长,聚结和出发,分析动态过程。对于光滑的表面,传统的气泡动力学模型可以准确地预测气泡脱离直径;虽然对于微销环境下的微引脚翅片结构表面,但该模型存在相对较大的偏差。原因是,最初建立了用于光滑表面的传统气泡动力学模型,以单泡的力平衡分析的角度建立,这并未考虑微引脚翅片表面上的气泡之间的强相互作用。根据微重力环境下的实验现象,有几个小气泡坐在微引脚翅片表面上的主要气泡下。小气泡与主要气泡之间的相互作用防止了主要泡沫的偏离。提出了一种基于力平衡的改进的气泡动力学模型,以预测在微引脚翅片表面上的气泡偏离直径,这考虑了主要气泡下方小气泡的拖曳力的作用。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号