首页> 外文期刊>Angewandte Chemie >Graduate School of Pharmaceutical Sciences, The University of Tokyo, The HFRE Division, ERATO, Japan Science and Technology Agency (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
【24h】

Graduate School of Pharmaceutical Sciences, The University of Tokyo, The HFRE Division, ERATO, Japan Science and Technology Agency (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

机译:东京大学药理学研究科,日本科学技术厅(JST),ERATO HFRE系,东京文京区本乡市,东京113-0033

获取原文
获取原文并翻译 | 示例
           

摘要

The last decade has witnessed the development of a dichotomy in scanning-probe lithographic (SPL) approaches and systems.[1]-[4] These techniques are either: 1) constructive, such as dip-pen nanolithography (DPN),[1], [2] and involve the delivery of molecules or other materials that can chemically or physically anchor to the underlying substrate, or 2) destructive (e.g. anodic oxidation[5], [6] and nanografting[7]) and involve the delivery of energy (in the form of heat, force, or current) to a surface that results in the physical change, chemical transformation, or displacement of the underlying material.[3], [4] The design demands for parallelization of the two approaches are daunting but extremely different because of the fundamental difference between delivering energy and chemical materials. In fact, the only example of massively parallel SPL is the millipede, which has been limited to destructive patterning involving polymer thermal indentation and annealing.[8]-[10] Since throughput is the biggest limitation of the constructive DPN technology, large area parallelization capabilities must be developed to realize its full potential.[3], [4], [11], [12] However, parallelization must be accomplished with the constraints and capabilities of the DPN technique in mind. Herein, we describe a solution to DPN parallelization through the development, fabrication, and use of a novel 55 000-pen two-dimensional (2D) array to pattern gold substrates with sub-100-nm resolution over square centimeter areas (Scheme 1).
机译:过去十年见证了扫描探针光刻(SPL)方法和系统的二分法的发展。[1]-[4]这些技术是:1)建设性的,例如浸笔式纳米光刻(DPN),[1] ],[2]并涉及可化学或物理锚定在下面基质上的分子或其他材料的输送,或2)破坏性的(例如阳极氧化[5],[6]和纳米接枝[7])并涉及输送能量(以热,力或电流的形式)传递到表面,导致底层材料发生物理变化,化学转化或位移。[3],[4]设计要求两种方法并行化由于提供能源和化学材料之间的根本差异,它们令人望而生畏,但却截然不同。实际上,大规模并行SPL的唯一例子是千足虫,它仅限于涉及聚合物热压痕和退火的破坏性图案。[8]-[10]由于吞吐量是结构性DPN技术的最大局限,因此大面积并行化必须开发能力以实现其全部潜力。[3],[4],[11],[12]但是,必须在考虑DPN技术的约束和能力的情况下完成并行化。在本文中,我们描述了通过开发,制造和使用新型的5.5万笔二维(2D)阵列在平方厘米面积上以低于100 nm的分辨率对金基板进行图案化的方案,实现了DPN并行化的解决方案(方案1) 。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号