首页> 外文期刊>ACS applied materials & interfaces >Electric Field-Induced Cutting of Hydrogel Microfibers with Precise Length Control for Micromotors and Building Blocks
【24h】

Electric Field-Induced Cutting of Hydrogel Microfibers with Precise Length Control for Micromotors and Building Blocks

机译:电磁场诱导水凝胶微纤维切割,微量仪和构建块精确长度控制

获取原文
获取原文并翻译 | 示例
           

摘要

Microfiber modules with controllable lengths emerged as novel biomimetic platforms and are significant for many tissue engineering applications. However, accurately controlling the length of microfibers on the scale of millimeter or even micrometer still remains challenging. Here, a novel and scalable strategy to generate microfiber modules with precisely tunable lengths ranging from 100 to 3500 mu m via an alternating current (AC) electric field is presented. To control the microfiber length, double-emulsion droplets containing a chelating agent (sodium citrate) as a spacing node are first uniformly embedded in the microfibers in a controllable spatial arrangement. This process is precisely tuned by adjusting the flow rates, thus, tailoring the resulting multicompartmental microfiber structure. Next, an AC voltage signal is used to trigger the electric field-induced cutting process, where the time-averaged electrical force acting on the induced bipolar charge from the Maxwell-Wagner structural polarization mechanism breaks the stress balance at the interfaces, rupturing the double-emulsion droplets, and resulting in the burst release of the encapsulated chelating agents into the hydrogel cavity. The outer hydrogel shell is quickly dissolved by a chemical reaction, cutting the long fiber into a series of microfiber units of given length. Furthermore, adding magnetic nanoparticles endows magnetic functionality with these microfiber modules, which are allowed to serve as micromotors and building blocks. This electro-induced cutting method provides a facile strategy for the fabrication of microfibers with desired lengths, showing considerable promise for various chemical and biological applications.
机译:具有可控长度的超细纤维模块作为新型生物摩托的平台,对于许多组织工程应用具有重要意义。然而,准确地控制毫米或甚至千分尺的微纤维的长度仍然存在挑战性。这里,提出了一种新颖的和可扩展的策略,以产生具有通过交流(AC)电场100至3500μm的精确可调长度的微纤维模块。为了控制含有螯合剂(柠檬酸钠)作为间隔节点的双乳液液滴首先以可控空间布置均匀地嵌入微纤维中。通过调整流速来精确调谐该过程,从而剪裁所得到的多组微纤维结构。接下来,使用AC电压信号来触发电场诱导的切割过程,其中从Maxwell-Wagner结构偏振机构上发挥在诱导的双极电荷上的时间平均电力在接口处破坏应力平衡,破裂双重 - 乳液液滴,并导致包封螯合剂的爆发释放到水凝胶腔中。外水凝胶壳通过化学反应迅速溶解,将长纤维切成一系列给定长度的微纤维单元。此外,添加磁性纳米颗粒与这些微纤维模块赋予磁性功能,其允许用作微量电机和构件块。这种电诱导的切割方法提供了具有所需长度的微纤维制备微纤维的容易策略,对各种化学和生物学应用表示相当大的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号