首页> 外文期刊>ACS applied materials & interfaces >In Situ X-ray Diffraction and X-ray Absorption Spectroscopic Studies of a Lithium-Rich Layered Positive Electrode Material: Comparison of Composite and Core-Shell Structures
【24h】

In Situ X-ray Diffraction and X-ray Absorption Spectroscopic Studies of a Lithium-Rich Layered Positive Electrode Material: Comparison of Composite and Core-Shell Structures

机译:原位X射线衍射和富含锂层状正电极材料的X射线吸收光谱研究:复合材料和芯壳结构的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium- and manganese-rich transition-metal oxide (LMR-NMC) electrodes have been designed either as heterostructures of the primary components ("composite") or as core-shell structures with improved electrochemistry reported for both configurations when compared with their primary components. A detailed electrochemical and structural investigation of the 0.5Li(0.5)MnO(3)-0.5LiNi(0.5)Mn(0.3)Co(0.2)O(2) composite and core-shell structured positive electrode materials is reported. The core-shell material shows better overall electrochemical performance compared to its corresponding composite material. While both configurations gave the same initial charge capacity of similar to 300 mAh/g when cycled at a rate of 10 mA/g at 25 degrees C, the core-shell sample gives a discharge capacity of 232 mAh/g compared to 208 mAh/g delivered by the composite sample. Also, the core-shell sample gave better rate capability and a smaller firstcycle irreversible capacity loss than the composite sample. The improved performance of the core-shell material is attributed to its lower surface reactivity and limited structural change since the more stable Li2MnO3 shell screens the more reactive Ni-rich core material from interacting with either air or electrolyte at high potentials, thereby preventing electrode surface modification. In situ X-ray diffraction correlated with electrochemical data revealed that the composite sample shows stronger volumetric changes in the lattice parameters during charging to 4.8 V. In addition, X-ray absorption spectroscopy showed an incomplete Ni reduction process after the first discharge for the composite sample. From these results, it was shown that this leads to a more severe degradation in the composite material that affects Li+ intercalation in the subsequent discharge, thereby resulting in its poorer performance. Furthermore, to confirm these results, another LMR-NMC material with a different composition (having a Ni-poor core)-0.5Li(2)Mn(0.3)-0.5LiNi(0.33)Mn(0.33)Co(0.33)O(2)-was investigated. The core-shell structured positive electrode material also gave an improved electrochemical performance compared to the corresponding composite positive electrode material. These results show that the core-shell configuration could effectively be used to improve the performance of the LMR-NMC materials to enable future high-energy applications.
机译:富含锂和锰的过渡金属氧化物(LMR-NMC)电极已经设计为主要成分(“复合材料”)的异质结构,或者作为核心壳结构,与其主要成分相比,在两种配置中报告了两种配置的电化学。报道了0.5LI(0.5)MNO(3)-0.5林(0.5)Mn(0.3)CO(0.2)O(2)复合和核 - 壳结构正极材料的详细电化学和结构研究。与其相应的复合材料相比,芯壳材料显示出更好的整体电化学性能。虽然两种配置在25摄氏度的速率下循环10mA / g的速率时,两种配置相同的初始充电容量,核心 - 壳样品与208mAh / G由复合样品递送。此外,核 - 壳样品的速率能力更好,并且比复合样品更较小的FirstCycle不可逆的容量损失。核心壳材料的改善性能归因于其较低的表面反应性和有限的结构变化,因为更稳定的Li2mNO3壳筛地筛选更多的反应性Ni的芯材料在高电位下与空气或电解质相互作用,从而防止电极表面修改。原位X射线衍射与电化学数据相关,显示复合样品在充电期间显示晶格参数的更强的体积变化,此外,X射线吸收光谱显示复合材料首次放电后的不完全Ni还原过程样本。从这些结果中,显示出它导致在随后的放电中影响Li +嵌入的复合材料中更严重的降解,从而导致其性能较差。此外,为了确认这些结果,另一种具有不同组成的LMR-NMC材料(具有Ni贫核核心)-0.5LI(2)Mn(0.3)-0.5LLI(0.33)Mn(0.33)Co(0.33)O(0.33)O(0.33)O(0.33)O(0.33)O(0.33)O( 2)-Was调查。与相应的复合正电极材料相比,芯壳结构的正极材料也得到了改善的电化学性能。这些结果表明,核心外壳配置可以有效地用于改善LMR-NMC材料的性能,以实现未来的高能量应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号