...
首页> 外文期刊>Chemical engineering journal >Integrated absorption-mineralisation for energy-efficient CO2 sequestration: Reaction mechanism and feasibility of using fly ash as a feedstock
【24h】

Integrated absorption-mineralisation for energy-efficient CO2 sequestration: Reaction mechanism and feasibility of using fly ash as a feedstock

机译:用于节能CO2封存的集成吸收 - 矿化:使用粉煤灰作为原料的反应机理和可行性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The most critical challenge for the large-scale implementation of amine-based carbon dioxide (CO2) capture is the high energy consumption of absorbent thermal regeneration. To reduce the energy requirement, absorbent thermal regeneration can be replaced by a chemical method that integrates amine scrubbing, chemical regeneration and CO2 mineralisation in one process. However, the mechanisms of the process and the application of industrial waste as feedstocks have not been fully investigated. In the present work, we studied the integrated CO2 absorption-mineralisation process using the benchmark solvent monoethanolamine (MEA) as an amine absorbent and fly ash as a chemical regeneration agent. We investigated the mechanism involved in the mineralisation in detail and studied the performance of MEA in regeneration by mineralisation of calcium oxide (CaO) at various CO2-loadings. The performance stability of MEA was verified in multicycle CO2 absorption-mineralisation experiments. We also investigated the technical feasibility of using fly ash as a feedstock for absorbent regeneration. Our results show that MEA can be regenerated after a carbonation reaction with both calcium oxide and fly ash at 40 degrees C, and that the CO2 absorbed by MEA is precipitated as calcium carbonate. Compared with traditional thermal regeneration-based CO2 capture, the integrated CO2 absorption-mineralisation process displays a similar cyclic CO2 -loading (0.21 mol/mol) but has great advantages in energy reduction and capital cost savings due to the smaller energy requirement of amine regeneration and the limitation of CO2 compression and pipeline transport. This technology has great potential for industrial application, particularly with CaO-containing wastes such as fly ash and carbide slag.
机译:大规模实施的基于胺类二氧化碳(CO2)捕获的最关键挑战是吸收热再生的高能耗。为了降低能量要求,吸收性热再生可以通过整合胺擦洗,化学再生和CO2矿化的化学方法代替。然而,尚未完全研究该过程的机制和工业废物的应用。在本作工作中,我们研究了使用基准溶剂单乙醇胺(MEA)作为胺吸收剂和粉煤灰作为化学再生剂的综合二氧化碳吸收 - 矿化方法。我们调查了详细涉及矿化的机制,并研究了各种CO 2载荷的氧化钙(CaO)矿化在再生中的性能。 MEA的性能稳定性在多网二氧化碳吸收 - 矿化实验中验证。我们还调查了使用粉煤灰作为吸收再生原料的技术可行性。我们的结果表明,在氧化钙和粉煤灰在40℃下碳酸化反应后可以再生MEA,并且通过MEA吸收的CO 2作为碳酸钙沉淀。与传统的热再生的二氧化碳捕获相比,集成的CO2吸收 - 矿化过程显示了类似的循环二氧化碳 - 载荷(0.21mol / mol),但由于胺再生的能量要求较小,节省能力和资本成本具有很大的优势以及二氧化碳压缩和管道运输的限制。该技术具有巨大的工业应用潜力,特别是含CaO的废物,如粉煤灰和硬质合金渣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号