首页> 外文期刊>Biochemistry >Cholesterol-Induced Lipophobic Interaction between Transmembrane Helices Using Ensemble and Single-Molecule Fluorescence Resonance Energy Transfer
【24h】

Cholesterol-Induced Lipophobic Interaction between Transmembrane Helices Using Ensemble and Single-Molecule Fluorescence Resonance Energy Transfer

机译:使用集合和单分子荧光共振能量转移胆固醇诱导跨膜螺旋之间的脂质恐惧酶相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The solvent environment regulates the conformational dynamics and functions of solvated proteins. In cell membranes, cholesterol, a major eukaryotic lipid, can markedly modulate protein dynamics. To investigate the nonspecific effects of cholesterol on the dynamics and stability of helical membrane proteins, we monitored association-dissociation dynamics on the antiparallel dimer formation of two simple transmembrane helices (AALALAA)(3) with single-molecule fluorescence resonance energy transfer (FRET) using Cy3B- and Cy5-labeled helices in lipid vesicles (time resolution of 17 ms). The incorporation of 30 mol % cholesterol into phosphatidylcholine bilayers significantly stabilized the helix dimer with average lifetimes of 450-170 ms in 20-35 degrees C. Ensemble FRET measurements performed at 15-55 degrees C confirmed the cholesterol-induced stabilization of the dimer (at 25 degrees C, Delta Delta G(a) = -9 kJ mol(-1) and Delta Delta H-aa= -60 kJ mol(-1)), most of which originated from lipophobic interactions by reducing helix-lipid contacts and the lateral pressure in the hydrocarbon core region. The temperature dependence of the dissociation process (activation energy of 48 kJ) was explained by the Kramers-type frictional barrier in membranes without assuming an enthalpically unfavorable transition state. In addition to these observations, cholesterol-induced tilting of the helices, a positive Delta C-p(a), and slower dimer formation compared with the random collision rate were consistent with a hypothetical model in which cholesterol stabilizes the helix dimer into an hourglass shape to relieve the lateral pressure. Thus, the liposomal single-molecule approach highlighted the significance of the cholesterol-induced basal force for interhelical interactions, which will aid discussions of complex protein-membrane systems.
机译:溶剂环境调节溶剂化蛋白的构象动态和功能。在细胞膜中,胆固醇,主要的真核脂质,可以显着调节蛋白质动态。探讨胆固醇对螺旋膜蛋白的动力学和稳定性的非特异性影响,我们监测了双分子荧光共振能量转移(FRET)的两种简单跨膜螺旋(AALALAA)(3)的反平行二聚体形成对联合解离动力学在脂质囊泡中使用Cy3B-和Cy5标记的螺旋(17毫秒的时间分辨率)。将30摩尔%的胆固醇掺入磷脂酰胆碱双层,在20-35℃的20-35摄氏度中具有450-170ms的平均寿命的螺旋二聚体显着稳定。在15-55摄氏度下进行的集合FRET测量确认了二聚体的胆固醇诱导的稳定化(在25摄氏度下,Delta delta g(a)= -9 kjmol(-1)和delta delta h-aa = -60 kj mol(-1)),其中大部分是通过减少螺旋脂质触点来源于脂恐怖相互作用和烃芯区域中的横向压力。解离过程的温度依赖性(48kJ的活化能量)通过膜中的克隆型摩擦屏障解释,而不假设焓不利的过渡状态。除了这些观察结果外,与随机碰撞速率相比,胆固醇诱导的螺旋倾斜,阳性δCP(A)和较慢的二聚体形成是一致的,其中胆固醇稳定螺旋二聚体至滴漏形状减轻横向压力。因此,脂质体单分子方法突出了胆固醇诱导的间的渗透相互作用的基础力的重要性,这将有助于讨论复杂的蛋白质 - 膜系统。

著录项

  • 来源
    《Biochemistry》 |2015年第6期|共9页
  • 作者单位

    Kyoto Univ Grad Sch Pharmaceut Sci Sakyo Ku Kyoto 6068501 Japan;

    Kyoto Univ Grad Sch Pharmaceut Sci Sakyo Ku Kyoto 6068501 Japan;

    Kyoto Univ Grad Sch Pharmaceut Sci Sakyo Ku Kyoto 6068501 Japan;

    Kyoto Univ Grad Sch Pharmaceut Sci Sakyo Ku Kyoto 6068501 Japan;

    Kyoto Univ Grad Sch Pharmaceut Sci Sakyo Ku Kyoto 6068501 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号