首页> 外文期刊>ACS applied materials & interfaces >In-Depth Understanding of the Morphology-Performance Relationship in Polymer Solar Cells
【24h】

In-Depth Understanding of the Morphology-Performance Relationship in Polymer Solar Cells

机译:深入了解聚合物太阳能电池的形态性能关系

获取原文
获取原文并翻译 | 示例
           

摘要

It is well-established that thermal annealing optimizes the morphology and improves the efficiency of P3HT-based organic solar cells, but the effects of different cooling rates after annealing are not well understood. In this paper, we use a model system based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) to examine the relationship between morphology and device performance for annealing before (preannealing) and after (postannealing) the application of the electrode, with different cooling rates and in different device architectures. In the conventional structure, postannealing is confirmed to significantly enhance efficiency. The device prepared with a slow cooling rate (3.6%) shows a higher average power conversion efficiency than that prepared with a fast cooling rate (3.3%). The microstructural changes underlying this 10% increase in device performance and further effects of cooling rate, pre- and postannealing, and device architecture are comprehensively examined with a combination of synchrotron-based techniques, including grazing incidence wide-angle X-ray scattering, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. The best device in the conventional architecture (postannealed with slow cooling rate) shows a more face-on orientation and narrower orientational distribution of P3HT crystallites. In addition, postannealing leads to PCBM diffusion toward the blend/top electrode interface. The enrichment of PCBM at the blend/top electrode interface plays a positive role in aiding electron collection at the electrode in the conventional structure, but it has a negative effect on the performance of the inverted structure, where hole collection at the top electrode instead is required. For this reason, in an inverted structure, preannealed films with slow cooling exhibit the best photovoltaic performance.
机译:众所周知,热退火可以优化形态并提高P3HT基有机太阳能电池的效率,但是对退火后不同冷却速率的影响还知之甚少。在本文中,我们使用基于聚(3-己基噻吩)(P3HT)和苯基-C61-丁酸甲酯(PCBM)的模型系统来检查(退火前和退火后)形态与器件性能之间的关系。后退火),在不同的冷却速度和不同的设备架构中电极的应用。在常规结构中,证实了后退火可以显着提高效率。用慢冷却速率(3.6%)制备的设备显示出比用快冷却速率(3.3%)制备的设备更高的平均功率转换效率。通过结合基于同步加速器的技术(包括掠射入射广角X射线散射),全面检查了器件性能提高10%以及冷却速率,预退火和后退火以及器件架构进一步影响的微观结构变化,包括边缘X射线吸收精细结构光谱和X射线光电子能谱。传统体系结构中最好的设备(以缓慢的冷却速度进行后退火)显示出更多的面向面取向,并且P3HT晶体的取向分布更窄。另外,后退火导致PCBM向混合/顶部电极界面扩散。在传统结构中,在混合电极/顶部电极界面处PCBM的富集有助于电极中电子的收集,但对倒置结构的性能却有负面影响,在顶部电极中的空穴收集反而是需要。因此,在倒置结构中,缓慢冷却的预退火膜表现出最佳的光伏性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号