首页> 外文期刊>ACS applied materials & interfaces >Construction of A Fluorescent Nanostructured Chitosan-Hydroxyapatite Scaffold by Nanocrystallon Induced Biomimetic Mineralization and Its Cell Biocompatibility
【24h】

Construction of A Fluorescent Nanostructured Chitosan-Hydroxyapatite Scaffold by Nanocrystallon Induced Biomimetic Mineralization and Its Cell Biocompatibility

机译:纳米晶诱导仿生矿化法构建荧光纳米结构壳聚糖-羟基磷灰石支架及其细胞生物相容性

获取原文
获取原文并翻译 | 示例
           

摘要

Biomaterial surfaces and their nanostructures can significantly influence cell growth and viability. Thus, manipulating surface characteristics of scaffolds can be a potential strategy to control cell functions for stem cell tissue engineering. In this study, in order to construct a hydroxyapatite (HAp) coated genipin-chitosan conjugation scaffold (HGCCS) with a well-defined HAp nanostructured surface, we have developed a simple and controllable approach that allows construction of a two-rlevel, three-dimensional (3D) networked structure to provide sufficient calcium source and achieve desired mecha-nical function and mass transport (permeability and diffusion) properties. Using a nontoxic cross-linker (genipin) and a nanocrystallon induced biomimetic mineralization method, we first assembled a layer of HAp network-like nanostructure on a 3D porous chitosan-based framework. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis confirm that the continuous network-like nanostructure on the channel surface of the HGCCS is composed of crystalline HAp. Compressive testing demonstrated that the strength of the HGCCS is apparently enhanced because of the strong cross-linking of genipin and the resulting reinforcement of the HAp nanonetwork. The fluorescence properties of genipin-chitosan conjugation for convenient monitoring of the 3D porous scaffold biodegradability and cell localization in the scaffold was specifically explored using confocal laser scanning microscopy (CLSM). Furthermore, through scanning electron microscope (SEM) observation and immunofluorescence measurements of F-actin, we found that the HAp network-like nanostructure on the surface of the HGCCS can influence the morphology and integrin-mediated cytoskeleton organization of rat bone marrow-derived mesenchymal stem cells (BMSCs). Based on cell proliferation assays, rat BMSCs tend to have higher viability on HGCCS in vitro. The results of this study suggest that the fluorescent two-level 3D nanostructured chitosan-HAp scaffold will be a promising scaffold for bone tissue engineering application.
机译:生物材料表面及其纳米结构可显着影响细胞生长和生存能力。因此,操纵支架的表面特性可能是控制干细胞组织工程细胞功能的潜在策略。在这项研究中,为了构建具有明确HAp纳米结构表面的羟基磷灰石(HAp)涂层的Genipin-壳聚糖共轭支架(HGCCS),我们开发了一种简单且可控制的方法,可构建两级,三级三维(3D)网络结构,以提供足够的钙源并实现所需的机械功能和质量传输(渗透率和扩散)特性。使用无毒的交联剂(genipin)和纳米晶体诱导的仿生矿化方法,我们首先在基于3D多孔壳聚糖的框架上组装了一层类似HAp网络的纳米结构。 X射线衍射(XRD)和高分辨率透射电子显微镜(HRTEM)分析证实,HGCCS通道表面上的连续网络状纳米结构由晶体HAp组成。压缩测试表明,由于genipin的强交联作用和HAp纳米网络的增强作用,HGCCS的强度明显增强。使用共聚焦激光扫描显微镜(CLSM)专门研究了可方便地监测3D多孔支架生物降解性和支架中细胞定位的京尼平-壳聚糖结合的荧光特性。此外,通过扫描电子显微镜(SEM)观察和F-肌动蛋白的免疫荧光测量,我们发现HGCCS表面的HAp网络状纳米结构可以影响大鼠骨髓间充质的形态和整合素介导的细胞骨架组织干细胞(BMSC)。基于细胞增殖测定,大鼠骨髓间充质干细胞倾向于在体外对HGCCS具有更高的生存能力。这项研究的结果表明,荧光两级3D纳米结构壳聚糖-HAp支架将是骨组织工程应用的有前途的支架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号