首页> 外文期刊>ACS applied materials & interfaces >Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability
【24h】

Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability

机译:具有增强的锂存储能力的分层石墨烯包裹的空心SnO2 @ SnS2纳米结构

获取原文
获取原文并翻译 | 示例
           

摘要

Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO2@SnS2@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cyclability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the second to the 100th cycle, lower than the capacity degradation of bare SnO2 hollow spheres (0.830%) and single SnS2 nanosheets (0.393%). Even after being cycled at a range of specific currents varied from 100 mA/g to 2000 mA/g, hierarchical SnO2@SnS2@rGO nanocomposites maintain a reversible capacity of 664 mAh/g, which is much higher than single SnS2 nanosheets (374 mAh/g) and bare SnO2 hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulting from the lithiation/delithiation process and maintaining structural stability during cycling but also reduces aggregation and facilitates ion transport. This work thus demonstrates the great potential of hierarchical SnO2@SnS(2)rGO nanocomposites for applications as a high-performance anode material in next-generation lithium ion battery technology.
机译:复杂的层次结构由于其优于构成组件的特性而受到了极大的关注。在这项研究中,通过简单的水热方法,然后通过溶剂热表面改性,在空心SnO2球的骨架上原位硫化,成功地制备了分层石墨烯包裹的空心SnO2 @ SnS2纳米结构。所制备的分级SnO2 @ SnS2 @ rGO纳米复合材料可用作锂离子电池的负极材料,在200 mA / g的比电流下经过100次电化学循环后,具有出色的循环能力,容量为583 mAh / g。这种材料显示出从第二个周期到第100个周期的每周期仅0.273%的极低容量衰减,低于裸露的SnO2中空球体(0.830%)和单个SnS2纳米片的容量衰减(0.393%)。即使在从100 mA / g到2000 mA / g的特定电流范围内循环后,分级SnO2 @ SnS2 @ rGO纳米复合材料仍可保持664 mAh / g的可逆容量,这远高于单个SnS2纳米片(374 mAh) / g)和裸露的SnO2空心球(177 mAh / g)。这种显着改善的电化学性能可以归因于独特的分层空心结构,它不仅可以有效缓解锂化/脱锂过程产生的应力,并在循环过程中保持结构稳定性,而且可以减少聚集并促进离子迁移。因此,这项工作证明了分级SnO2 @ SnS(2)rGO纳米复合材料在下一代锂离子电池技术中作为高性能阳极材料的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号