首页> 外文期刊>ACS applied materials & interfaces >Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials
【24h】

Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials

机译:磁性核壳纳米粒子晶体结构的自组装,用于制造纳米结构材料

获取原文
获取原文并翻译 | 示例
           

摘要

A theoretical study is presented of the template-assisted formation of crystalline superstructures of magnetic dielectric core-shell particles. The templates produce highly localized gradient fields and a corresponding magnetic force that guides the assembly with nanoscale precision in particle placement. The process is studied using two distinct and complementary computational models that predict the dynamics and energy of the particles, respectively. Both mono- and polydisperse colloids are studied, and the analysis demonstrates for the first time that although the particles self-assemble into ordered crystalline superstructures, the particle formation is not unique. There is a Brownian motion-induced degeneracy in the process wherein various distinct, energetically comparable crystalline structures can form for a given template geometry. The models predict the formation of hexagonal close packed (HCP) and face centered cubic (FCC) structures as well as mixed phase structures due to in-plane stacking disorders, which is consistent with experimental observations. The polydisperse particle structures are less uniform than the monodisperse particle structures because of the irregular packing of different-sized particles. A comparison of self-assembly using soft- and hard-magnetic templates is also presented, the former being magnetized in a uniform field. This analysis shows that soft-magnetic templates enable an order-of-magnitude more rapid assembly and much higher spatial resolution in particle placement than their hard-magnetic counterparts. The self-assembly method discussed is versatile and broadly applies to arbitrary template geometries and multilayered and multifunctional mono- and polydisperse core-shell particles that have at least one magnetic component. As such, the method holds potential for the bottom-up fabrication of functional nanostructured materials for a broad range of applications. This work provides unprecedented insight into the assembly process, especially with respect to the viability and potential fundamental limitations of realizing structure-dependent material properties for applications.
机译:提出了模板辅助形成磁性介电核-壳颗粒的晶体超结构的理论研究。模板产生高度局部化的梯度场和相应的磁力,从而以纳米级精度在颗粒放置中引导组件。使用两个分别预测颗粒的动力学和能量的不同且互补的计算模型来研究该过程。对单分散和多分散胶体都进行了研究,分析首次证明尽管颗粒自组装成有序的晶体超结构,但颗粒的形成并不是唯一的。在该过程中存在布朗运动引起的简并性,其中对于给定的模板几何形状可以形成各种不同的,在能量上可比的晶体结构。该模型预测由于面内堆垛紊乱而形成的六方密堆积(HCP)和面心立方(FCC)结构以及混合相结构,这与实验观察结果一致。由于不同尺寸颗粒的不规则堆积,多分散颗粒结构不如单分散颗粒结构均匀。还介绍了使用软磁性和硬磁性模板进行自组装的比较,其中前者在均匀磁场中被磁化。这项分析表明,与硬磁模板相比,软磁模板在粒子放置中的数量级更快,组装更快,空间分辨率更高。讨论的自组装方法用途广泛,可广泛应用于任意模板几何形状以及具有至少一种磁性成分的多层多功能单核和多分散核-壳颗粒。因此,该方法具有自底向上制造功能纳米结构材料的潜力,可用于广泛的应用领域。这项工作为组装过程提供了空前的见识,尤其是在实现应用程序依赖结构的材料特性的可行性和潜在的基本限​​制方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号