首页> 外文期刊>ACS applied materials & interfaces >Engineering Graphene Conductivity for Flexible and High-Frequency Applications
【24h】

Engineering Graphene Conductivity for Flexible and High-Frequency Applications

机译:灵活和高频应用的工程石墨烯电导率

获取原文
获取原文并翻译 | 示例
           

摘要

Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodirnethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the pi electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.
机译:轻质,柔性和保形电子设备的进步取决于具有高电导率和高机械强度的材料。无缺陷石墨烯就是这样一种材料,它既满足这些要求,又为在微波,太赫兹,红外或光频率下工作的设备提供了一系列吸引人的和可调谐的电,光电和等离激元特性。因此,对于此类器件的未来成功而言,至关重要的是能够控制石墨烯的频率依赖性电导率。为了加快石墨烯高频应用的发展,在这里我们展示了如何容易获得和可加工的有机和有机金属分子可以有效地将石墨烯掺杂到载流子密度超过10(13)cm(-2)的情况下,其电导率在千兆赫兹超过60 mS。在使用分子3,6-二氟-2,5,7,7,8,8-六氰基喹二乙烷(F2-HCNQ)时,计算出每个吸附分子0.5个电子的高电荷转移(CT),从而得到p型石墨烯的掺杂。使用钴茂金属和含硫分子四硫富瓦烯(TTF)可以实现n型掺杂,每个吸附分子的CT分别贡献0.41和0.24个电子。高效的CT与分子中和石墨烯中存在的pi电子之间的相互作用有关。高频电导率的计算表明,在很大的千兆赫兹频率范围内,电导率的实分量的无分散行为。还讨论了可以利用这些特性的石墨烯天线和通信中的潜在高频应用,以及使用分子掺杂来修改拥有低能量狄拉克锥的功能材料的广泛影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号