...
首页> 外文期刊>Journal of Quantitative Spectroscopy & Radiative Transfer >Pressure effects on radiative heat transfer in sooting turbulent diffusion flames
【24h】

Pressure effects on radiative heat transfer in sooting turbulent diffusion flames

机译:烟灰湍流扩散火焰中对辐射传热的压力影响

获取原文
获取原文并翻译 | 示例
           

摘要

This article investigates the effects of increasing pressure up to 4 atm on radiative heat transfer in momentum-driven methane turbulent jet flames by using well-established chemical mechanism, combustion, soot production and radiation models. A transported PDF method is used to close properly the soot-production turbulence interaction and the emission Turbulence Radiation Interaction (TRI). A Narrow-Band CK (NBCK) model is used as the gas radiative property model. The absorption TRI is neglected based on the Optically-Thin Fluctuation Approximation (OTFA). In accordance with a previous study dealing with non-sooting hydrogen flames (Nmira et al., JQSRT 220 (2018) 172-179), the 3-atm and 4-atm flames are designed from the atmospheric flame by using a Froude modeling approach that allows to preserve the flame/flow structure as the pressure is increased and hence to isolate the pressure effects on soot production, radiative heat transfer, and TRI. The effects of increasing pressure on radiant fraction result from two competing mechanisms: i) an increase in soot emission that tends to increase the radiant fraction and ii) a reduction in flame transparency that tends to reduce it. For the present flames, the first mechanism dominates the second, resulting in an increased radiant fraction with increasing the pressure. The TRI effects on flame radiative loss are also governed by competing mechanisms. The enhancement mechanism is due to gas emission TRI and temperature self-correlation effects on soot emission whereas the reduction mechanism is caused by the negative correlation between soot volume fraction and temperature. The former dominates whereas the latter becomes increasingly important with increasing the pressure. This limits the increase in the global radiative loss due to TRI as the pressure is increased. In addition, numerical simulations show that the TRI effects can reduce the local radiative loss in regions of high soot concentration of the 4 atm flame. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本文通过使用熟悉的化学机理,燃烧,烟灰产生和辐射模型来调查增加压力升高到4个速度的辐射传热对动力驱动的甲烷湍流喷射火焰的影响。运输的PDF方法用于置于烟灰制作湍流相互作用和发射湍流辐射相互作用(TRI)。窄带CK(NBCK)模型用作气体辐射性能模型。基于光学薄波动近似(OTFA)忽略了吸收三。根据以前的研究处理非烟灰氢火焰(Nmira等,JQSRT 220(2018)172-179),通过使用FRoude建模方法,从大气火焰设计3 ATM和4-ATM火焰允许保持火焰/流动结构随着压力增加,因此在烟灰产生的压力效应,辐射热传递和三重方面。增加压力对两个竞争机制的辐射级分的影响:i)烟灰发射的增加趋于增加辐射馏分,ii)倾向于减少散发性的火焰透明度的降低。对于本发明的火焰,第一机构主导第二,导致增加压力增加的辐射级分。对火焰辐射损失的三种影响也通过竞争机制来控制。增强机构是由于气体发射三和温度自相关效应对烟灰发射,而减少机构是由烟灰体积分数和温度之间的负相关引起的。前者占主导地位,而后者随着增加压力变得越来越重要。由于压力增加,这限制了由于TRI引起的全局辐射损失的增加。此外,数值模拟表明,TRI效应可以降低4个ATM火焰的高烟灰浓度区域的局部辐射损失。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号