...
首页> 外文期刊>Journal of orthopaedic research >Dynamical analysis of dislocation‐associated factors in total hip replacements by hardware‐in‐the‐loop simulation
【24h】

Dynamical analysis of dislocation‐associated factors in total hip replacements by hardware‐in‐the‐loop simulation

机译:用硬件在线模拟中髋关节替换中脱位相关因素的动态分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT Since dislocation of total hip replacements (THR) remains a clinical problem, its mechanisms are still in the focus of research. Previous studies ignored the impact of soft tissue structures and dynamic processes or relied on simplified joint contact mechanics, thus, hindered a thorough understanding. Therefore, the purpose of the present study was to use hardware‐in‐the‐loop (HiL) simulation to analyze systematically the impact of varying implant positions and designs as well as gluteal and posterior muscle function on THR instability under physiological‐like loading conditions during dynamic movements. A musculoskeletal multibody model emulated the in situ environment of the lower extremity during deep sit‐to‐stand with femoral adduction maneuver while a six‐axis robot moved and loaded a THR accordingly to feed physical measurements back to the multibody model. Commercial THRs with hard‐soft bearings were used in the simulation with three different head diameters (28, 36, 44?mm) and two offsets (M, XL). Cup inclination of 45°, cup anteversion of 20°, and stem anteversion of 10° revealed to be outstandingly robust against any instability‐related parameter variation. For the flexion motion, higher combined anteversion angles of cup and stem seemed generally favorable. Total hip instability was either deferred or even avoided even in the presence of higher cup inclination. Larger head diameters (36?mm) and femoral head offsets (8?mm) deferred occurrence of prosthetic and bone impingement associated with increasing resisting torques. In summary, implant positioning had a much higher impact on total hip stability than gluteal insufficiency and impaired muscle function. ? 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2557–2566, 2017.
机译:摘要由于总髋关节替换(Thr)的脱位仍然是一个临床问题,其机制仍处于研究的重点。以前的研究忽略了软组织结构和动态过程的影响或依赖于简化的关节接触力学,因此阻碍了彻底的理解。因此,本研究的目的是使用硬件 - 环路(HIL)模拟,系统地分析不同的植入位置和设计的影响以及在生理样载条件下对Thr不稳定性的衰弱和后肌功能在动态运动期间。肌肉骨骼多体模型模型在深入坐到的股骨进入机动期间模拟了下肢的原位环境,而股轴机器人移动和加载AR THR,以馈送物理测量回到多体模型。使用硬软轴承的商业THRS用于模拟,具有三个不同的头直径(28,36,44mm)和两个偏移(M,XL)。杯倾斜度为45°,杯子逆转率为20°,阀杆逆向10°,显示出对任何不稳定性相关的参数变化的突出稳健。对于屈曲运动,杯子和杆的较高组合的抗动杆角度似乎通常有利。即使在较高杯子倾斜度,也延迟甚至避免了总髋关节稳定性。较大的头部直径(& 36?mm)和股骨头偏移(8?mm)延迟发生与增加抵抗扭矩相关的假体和骨骼冲击的发生。总之,植入物定位对总髋关节稳定性的影响大得多,而不是贫肾功能不全和肌肉功能受损。还2017年骨科研究会。由Wiley期刊出版,Inc.J Orthop Res 35:2557-2566,2017。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号