...
首页> 外文期刊>Journal of Materials Engineering and Performance >Failure Analysis of Unidirectional Ceramic Matrix Composite Lamina and Cross-Ply Laminate under Fiber Direction Uniaxial Tensile Load: Cohesive Zone Modeling and Brittle Fracture Mechanics Approach
【24h】

Failure Analysis of Unidirectional Ceramic Matrix Composite Lamina and Cross-Ply Laminate under Fiber Direction Uniaxial Tensile Load: Cohesive Zone Modeling and Brittle Fracture Mechanics Approach

机译:单向陶瓷基质复合薄膜的失效分析和纤维方向下纤维张力下的横帘层压板:粘性区建模与脆性折断力学方法

获取原文
获取原文并翻译 | 示例
           

摘要

The current research work presents the computational micromechanical analysis of the room temperature tensile failure behavior of unidirectional (UD) and cross-ply (0/90) ceramic matrix composites (CMCs). For computational micromechanical analysis, three-dimensional (3D) representative volume element (RVE) and multi-fiber multilayer RVE (M-2 RVE) models are generated that are representative of the lamina and the laminate under investigation. The RVE and M-2 RVE models are generated by replicating the fiber distribution, and the placement of the fibers observed in a microscopic image of an actual CMC laminate. The generated RVE models consist of the discrete representation of individual constituent phases of the CMC such as fibers, interphase, matrix, and the fiber-interphase interface region. Under the applied external tensile load, the fiber-interphase interface interactions are modeled using the cohesive elements that follow the bilinear traction separation law. The matrix, fiber, and interphase materials failure behavior is captured using a brittle cracking model. In order to validate the proposed numerical methodology, the predicted average stress-strain curve at the UD laminate level is compared to the experimental stress-strain curve reported in the literature. In addition, the observed different phases in the predicted stress-strain curve are validated with the literature data. Using the proposed numerical methodology, a detailed local stress-strain and damage analysis leads to an observation that the so-called ductile stress-strain behavior (kink in the stress-strain curve) of a CMC UD laminate under uniaxial fiber direction tensile loads is mainly caused by the matrix damage initiation. Apart from the SiC material properties such as strength and fracture energy, it is also observed that the RVE size influences the average strength and failure strain predictions using computational micromechanics.
机译:目前的研究工作介绍了单向(UD)和交叉层(0/90)陶瓷基复合材料(CMC)的室温拉伸衰竭行为的计算微机械分析。对于计算微机械分析,产生三维(3D)代表体积元件(RVE)和多纤维多层RVE(M-2 RVE)模型,其代表薄层和在调查中的层压体。通过复制纤维分布来产生RVE和M-2 RVE模型,并且在实际CMC层压板的微观图像中观察到的纤维的放置。所生成的RVE模型包括CMC的各个组成阶段的离散表示,例如纤维,间联,矩阵和光纤相互区域。在应用的外部拉伸载荷下,使用遵循双线性牵引分离法的粘性元素来建模纤维间界面相互作用。使用脆性开裂模型捕获基质,光纤和间间材料故障行为。为了验证提出的数值方法,将UD层压水平的预测平均应力 - 应变曲线与文献中报道的实验应激 - 应变曲线进行比较。另外,预测应力 - 应变曲线中观察到的不同阶段用文献数据验证。使用所提出的数值方法,详细的局部应力 - 应变和损伤分析导致观察到在单轴纤维方向拉伸负荷下CMC UD层压板的所谓的延性应力 - 应变行为(应力 - 应变曲线曲线中的扭结)是主要由基质损伤引起引起的。除了诸如强度和骨折能量的SiC材料性质之外,还观察到,RVE大小利用计算微机械影响平均强度和失效应变预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号