首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Zn(O,S)-based electron-selective contacts with tunable band structure for silicon heterojunction solar cells
【24h】

Zn(O,S)-based electron-selective contacts with tunable band structure for silicon heterojunction solar cells

机译:基于用于硅杂角太阳能电池的可调谐带结构的Zn(o,s)基于电子选择性触点

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, there have been rapid advances in silicon heterojunction (SHJ) solar cells based on dopant-free contacts. However, there is no better choice to achieve flexible energy band alignment than to choose different materials. Here, Zn(O,S) materials, whose energy band structure can be flexibly tuned by a continuously adjustable ratio of S/Zn, combined with a low work function Mg layer, contribute a novel electron-selective contact (ESC) for Si-based dopant-free heterojunction solar cells. The tunability of the energy band structure of the ESC is confirmed by ultraviolet photoelectron spectroscopy (UPS) and photoluminescence (PL) spectroscopy, originating from the modulation of chemical composition by the change in oxygen partial pressure using reactive sputtering, which is linked to the Zn(O,S)/n-Si interface properties and the corresponding solar cell device performances. Zn(O,S) films with a high ratio of S/Zn present a small conduction band offset (CBO) and a large valence band offset (VBO) at the Zn(O,S)/n-Si interface, which reduces minority carrier recombination and favors majority carrier transport, and then contributes to an absolute efficiency gain of 1.9% compared with the reference cell. In contrast, the Zn(O,S) films with a low ratio of S/Zn present a large CBO at the Zn(O,S)/n-Si interface, which makes the solar cell J-V curve exhibit an anomalous S-shape with a degraded fill factor (FF). A similar J-V distortion trend is found in simulated results when the value of the CBO at the Si/Zn(O,S) interface goes from small to large. These results offer a concept of energy-band-tunable ESCs for constructing new dopant-free contacts to realize high-performance photovoltaic devices.
机译:最近,基于无掺杂剂接触的硅杂结(SHJ)太阳能电池存在快速进展。然而,没有更好的选择来实现灵活的能带对准而不是选择不同的材料。这里,Zn(O,S)材料,其能带结构可以通过连续调节的S / Zn的连续调节比,与低功函数Mg层组合,贡献了用于Si的新型电子选择性接触(ESC)基于掺杂的无掺杂异质结太阳能电池。 ESC的能带结构的可调谐性通过紫外光电和光电子谱(UPS)和光致发光(PL)光谱来证实,通过使用反应溅射的氧分压的变化来源自化学成分的调节,这与Zn连接(o,s)/ n-si接口属性和相应的太阳能电池设备性能。具有高比例的Zn(O,S)膜具有小导电带偏移(CBO)和Zn(O,S)/ N-Si接口的大型价带偏移(VBO),这减少了少数群体载体重组和最受欢迎的多数载流量,然后与参考电池相比,为1.9%的绝对效率增益有助于1.9%。相反,具有低比率的Zn(O,S)膜在Zn(O,S)/ N-Si接口处存在大CBO,这使得太阳能电池JV曲线表现出异常的S形具有降级的填充因子(FF)。当SI / ZN(O,S)接口的CBO值从小到大时,在模拟结果中找到了类似的J-V失真趋势。这些结果提供了能量带可调孔的概念,用于构建新的无掺杂触点以实现高性能光伏器件。

著录项

  • 来源
  • 作者单位

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Tianjin 300350 Peoples R China;

    Hebei Univ Coll Phys Sci &

    Technol Hebei Key Lab Opt Elect Informat &

    Mat Baoding 071002 Peoples R China;

    Hebei Univ Coll Phys Sci &

    Technol Hebei Key Lab Opt Elect Informat &

    Mat Baoding 071002 Peoples R China;

    Hebei Univ Coll Phys Sci &

    Technol Hebei Key Lab Opt Elect Informat &

    Mat Baoding 071002 Peoples R China;

    Yingli Energy China Co Ltd State Key Lab Photovolta Mat &

    Technol Baoding 071051 Hebei Peoples R China;

    Yingli Energy China Co Ltd State Key Lab Photovolta Mat &

    Technol Baoding 071051 Hebei Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Tianjin 300350 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Tianjin 300350 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Tianjin 300350 Peoples R China;

    Hanergy Heyuan Mobile Energy Intelligence Manufac Tianjin Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Tianjin 300350 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Tianjin 300350 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号