首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Architecting epitaxial-lattice-mismatch-free (LMF) zinc oxide/bismuth oxyiodide nano-heterostructures for efficient photocatalysis
【24h】

Architecting epitaxial-lattice-mismatch-free (LMF) zinc oxide/bismuth oxyiodide nano-heterostructures for efficient photocatalysis

机译:无错(LMF)氧化锌/铋氧化锌纳米异质结构的无匹配(LMF)氧化物纳米异质结构

获取原文
获取原文并翻译 | 示例
           

摘要

Developing efficient photocatalysts has been proved to be of great importance for many emerging applications, including the removal of recalcitrant organic pollutants in wastewaters and transforming solar energy into important chemical feedstocks. One of the major challenges for high performance photocatalysts is that most semiconductor-mediated photocatalysts suffer severe charge recombination which finally hinders the overall photocatalytic efficiency. Herein, a delicately designed epitaxial grown heterostructure composed of zinc oxide (ZnO) nanowire and ultra-small bismuth oxyiodide (BiOI) nanoflakes was synthesized featuring quasi-free lattice mismatch at the ZnO/BiOI interface. With the advances of suitable p-n junction energy band alignment and minimized lattice mismatch, the synthesized ZnO/BiOI heterostructure shows significantly high interfacial charge transfer and separation efficiency. The high performance heterostructured photocatalyst was applied for the photodegradation of Bisphenol-A (BPA) in an artificial organic wastewater. The results showed that the epitaxial-LMF heterostructure is much superior to both ZnO nanowires and BiOI micro-sheets in catalytic efficiency. Analyzing the time-resolved kinetic features of photo-induced charge carriers revealed that it is the high-degree lattice match at the ZnO/BiOI interface that contributes to the significant charge-separation in the LMF heterostructure, leading to the substantial improvement of photocatalytic efficiency. An interesting finding is that a strong Foster-resonance energy transfer (FRET) from ZnO to BiOI in the heterostructure was observed, which could enhance the solar energy utilization. This study provides a general strategy to improve the interfacial charge separation efficiency of heterostructured photocatalysts, thereby greatly promoting the photocatalytic performance.
机译:已被证明,开发高效的光催化剂对于许多新兴应用,包括去除废水中的顽钙有机污染物并将太阳能转化为重要的化学原料。高性能光催化剂的主要挑战之一是大多数半导体介导的光催化剂遭受严重的电荷重组,最终阻碍了整体光催化效率。在此,合成了由氧化锌(ZnO)纳米线和超小铋氧化物(BioI)纳米薄片组成的精致设计的外延生长异质结构被合成在ZnO / BioI界面处的准无晶格错配。随着合适的P-N结能带对准和最小化晶格错配的进步,合成的ZnO / BioI异质结构显示出显着高的界面电荷转移和分离效率。高效杂结构光催化剂用于人工有机废水中双酚-A(BPA)的光降解。结果表明,外延-LMF异质结构远高于ZnO纳米线和催化效率的生物微片。分析光诱导电荷载体的时间分辨动力学特征显示,它是ZnO / BioI界面处的高度晶格匹配,有助于LMF异质结构中的显着电荷分离,导致光催化效率的显着提高。一个有趣的发现是,观察到从ZnO到异质结构中的强烈的培养 - 共振能量转移(FRET),这可以提高太阳能利用。本研究提供了一种改善异质结构光催化剂的界面电荷分离效率的一般策略,从而大大促进了光催化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号