首页> 外文期刊>Journal of Materials Chemistry, B. materials for biology and medicine >Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces
【24h】

Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces

机译:通过DNA折纸纳米定制的生物传感器促进生物分子相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The interaction between a bioreceptor and its target is key in developing sensitive, specific and robust diagnostic devices. Suboptimal interbioreceptor distances and bioreceptor orientation on the sensor surface, resulting from uncontrolled deposition, impede biomolecular interactions and lead to a decreased biosensor performance. In this work, we studied and implemented a 3D DNA origami design, for the first time comprised of assay specifically tailored anchoring points for the nanostructuring of the bioreceptor layer on the surface of disc-shaped microparticles in the continuous microfluidic environment of the innovative Evalution (TM) platform. This bioreceptor immobilization strategy resulted in the formation of a less densely packed surface with reduced steric hindrance and favoured upward orientation. This increased bioreceptor accessibility led to a 4-fold enhanced binding kinetics and a 6-fold increase in binding efficiency compared to a directly immobilized non-DNA origami reference system. Moreover, the DNA origami nanotailored biosensing concept outperformed traditional aptamer coupling with respect to limit of detection (11 x improved) and signal-to-noise ratio (2.5 x improved) in an aptamer-based sandwich bioassay. In conclusion, our results highlight the potential of these DNA origami nanotailored surfaces to improve biomolecular interactions at the sensing surface, thereby increasing the overall performance of biosensing devices. The combination of the intrinsic advantages of DNA origami together with a smart design enables bottom-up nanoscale engineering of the sensor surface, leading towards the next generation of improved diagnostic sensing devices.
机译:BioreCeptor及其目标之间的相互作用是开发敏感,特定和强大的诊断装置的关键。在传感器表面上的次优相间的距离和生物聚焦取向,由不受控制的沉积产生,妨碍生物分子相互作用并导致生物传感器性能降低。在这项工作中,我们研究并实施了3D DNA折纸设计,首次组成了用于在创新的微流体环境的圆盘形微粒的表面上的生物受体层的纳米结构上特别定制了锚点的第一次组成的锚固点( TM)平台。这种生物的固定策略导致形成较少密集的填充表面,具有降低的空间障碍,并赞成向上取向。与直接固定的非DNA折纸参考系统相比,这种增加的生物截止者可访问性导致4倍增强的结合动力学和6倍的结合效率增加。此外,DNA折纸纳米杆的生物传感概念概念优于传统的互变型相对于检测极限(11×改善)和基于Aptamer的三明治生物测定中的检测极限(11x改善)和信噪比(2.5 x改善)。总之,我们的结果突出了这些DNA折纸纳米靶纳米杆的电位,以改善感测表面处的生物分子相互作用,从而提高了生物传感器装置的整体性能。 DNA折纸的内在优点与智能设计的组合可以实现传感器表面的自下而上的纳米级工程,导致下一代改进的诊断感测装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号