首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Inelastic Deformation of the Slochteren Sandstone: Stress-Strain Relations and Implications for Induced Seismicity in the Groningen Gas Field
【24h】

Inelastic Deformation of the Slochteren Sandstone: Stress-Strain Relations and Implications for Induced Seismicity in the Groningen Gas Field

机译:Slochteren砂岩的无弹性变形:Groningen气田诱导地震性的应力 - 应变关系和影响

获取原文
获取原文并翻译 | 示例
           

摘要

Pore pressure reduction in sandstone reservoirs generally leads to small elastic plus inelastic strains. These small strains (0.1%-1.0% in total) may lead to surface subsidence and induced seismicity. In current geomechanical models, the inelastic component is usually neglected, though its contribution to stress-strain behavior is poorly constrained. To help bridge this gap, we performed deviatoric and hydrostatic stress cycling experiments on Slochteren sandstone samples from the seismogenic Groningen gas field in the Netherlands. We explored in situ conditions of temperature (T = 100 °C) and pore fluid chemistry, porosities of 13% to 26% and effective confining pressures (≤320 MPa) and differential stresses (≤135 MPa) covering and exceeding those relevant to producing fields. We show that at all stages of deformation, including those relevant to producing reservoirs, 30%-50% of the total strain measured is inelastic. Microstructural observations suggest that inelastic deformation is largely accommodated by intergranular displacements at small strains of 0.5%-1.0%, with intragranular cracking becoming increasingly important toward higher strains. The small inelastic strains relevant for reservoir compaction can be described by an isotropic, Cam-clay plasticity model. Applying this model to the depleting Groningen gas field, we show that the in situ horizontal stress evolution is better represented by taking into account combined elastic and inelastic deformation than it is by representing the total deformation behavior using poroelasticity (up to 40% difference). Therefore, inclusion of the inelastic contribution to reservoir compaction has a key role to play in future geomechanical modelling of induced subsidence and seismicity.
机译:砂岩储层的孔隙压力降低通常导致小的弹性加无弹性菌株。这些小菌株(总共0.1%-1.0%)可能导致表面沉降和诱导的地震性。在目前的地质力学模型中,不弹性部件通常被忽略,尽管其对应力 - 应变行为的贡献受到严重受损。为了帮助弥合这一差距,我们在荷兰的地震原来的格罗宁根气田的Slochteren砂岩样品上表现了偏离偏离的和静水应激循环试验。我们探讨了温度(T = 100°C)和孔隙流体化学的原位条件,孔隙率为13%至26%,有效的狭窄压力(≤320MPa)和差分应力(≤135MPa)覆盖和超过与生产相关的压力字段。我们表明,在所有变形阶段,包括与生产储层相关的阶段,测量的总菌株的30%-50%是无弹性的。微观结构观察表明,在小菌株0.5%-1.0%的小菌株中的晶间位移大大地容纳了无弹性变形,具有腔内裂化对更高菌株越来越重要。可以通过各向同性,CAM粘土塑性模型来描述对储液器压实相关的小型无弹性菌株。将该模型应用于耗尽Groningen气体领域,我们表明,通过考虑组合的弹性和非弹性变形来表示原位水平应力进化,其通过表示使用腹弹性的总变形行为(高达40%差异)。因此,将无弹性贡献纳入水库压实在未来的诱导沉降和地震性的未来地质力学建模中具有关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号