...
首页> 外文期刊>Journal of Engineering Mechanics >Energy-Based Coarse Graining of the Lattice-Discrete Particle Model
【24h】

Energy-Based Coarse Graining of the Lattice-Discrete Particle Model

机译:基于能量的粗粒粗糙晶格 - 离散粒子模型

获取原文
获取原文并翻译 | 示例
           

摘要

Concrete is a complex heterogeneous material. Its internal structure controls its mechanical behavior through crack localization, branching, and coalescence. As a result, only models that represent its failure through fracture-mechanics-based formulations can physically account for such phenomena. Among these models, the lattice-discrete particle model (LDPM) has great success. By representing concrete through an assemblage of interacting coarse aggregate pieces, LDPM can successfully model concrete multiaxial behavior under various static and dynamic loading conditions. However, this fine detailing results in a large computational cost that hampers the use of LDPM in large structural scale applications. In this work, the formulation of a calibration-free coarse-graining technique is presented. In this technique, fictitiously larger aggregate pieces are used to replace the original concrete aggregate pieces, with linear scaling of aggregate diameters. The formulation accounts for the effect of coarse graining on the amount of energy dissipated during deformation under combined tension and shear (tension-shear). Because of coarse graining, less distributed cracking is represented during tension-shear deformation at the coarse scale. The proposed formulation recovers this energy-dissipating mechanism by introducing a transition function in the tension-shear constitutive law based on the coarse-graining factor and geometry, which eliminates the need to recalibrate the LDPM parameters for the coarser scale. The formulation is developed and initially validated using simulations of uniaxial compression and notched three-point bending tests, with coarse-graining factors up to 5. Then, using the same identified function without any change, extensive validation of the technique is demonstrated by simulating size effect tests of notched three-point bending tests, uniaxial compression of ultrahigh-performance concrete (UHPC) with various scaling factors, and flexural behavior
机译:混凝土是复杂的异质材料。其内部结构通过裂纹定位,分支和聚结来控制其机械行为。结果,只能通过骨折 - 力学的配方代表其失败的模型可以物理地解释这种现象。在这些模型中,格子离散粒子模型(LDPM)取得了巨大成功。通过表示混凝土通过相互作用粗骨料的组合,LDPM可以在各种静态和动态负载条件下成功模拟混凝土多轴行为。然而,这种精细的细节导致大量的计算成本,妨碍了LDPM在大型结构尺度应用中的使用。在这项工作中,提出了无晶粒粗晶粒技术的制剂。在这种技术中,较大的聚集件用于更换原有的混凝土聚集件,具有线性缩放的聚集直径。制剂考虑了粗粒度在组合张力和剪切(张力剪切)下变形期间耗散的能量。由于粗糙粗晶粒,在粗糙度下张紧剪切变形期间表示较少的分布式裂缝。所提出的制剂通过基于粗晶因子和几何形状引入张紧剪切本构法中的过渡功能来恢复这种能量耗散机制,这消除了重新校准LDPM参数以进行粗糙比例的需要。使用单轴压缩和缺口三点弯曲试验的模拟开发并最初验证了配方,并且粗内磨削的因素最多5次。然后,使用相同的识别功能而没有任何变化,通过模拟尺寸来证明对该技术的广泛验证缺口三点弯曲试验的效果试验,具有各种缩放因子的超高性能混凝土(UHPC)的单轴压缩,以及弯曲行为

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号