...
首页> 外文期刊>Journal of Computational Physics >Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
【24h】

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

机译:物理知识的神经网络:用于解决非线性偏微分方程的前向和逆问题的深度学习框架

获取原文
获取原文并翻译 | 示例
           

摘要

We introduce physics-informed neural networks - neural networks that are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear partial differential equations. In this work, we present our developments in the context of solving two main classes of problems: data-driven solution and data-driven discovery of partial differential equations. Depending on the nature and arrangement of the available data, we devise two distinct types of algorithms, namely continuous time and discrete time models. The first type of models forms a new family of data-efficient spatio-temporal function approximators, while the latter type allows the use of arbitrarily accurate implicit Runge-Kutta time stepping schemes with unlimited number of stages. The effectiveness of the proposed framework is demonstrated through a collection of classical problems in fluids, quantum mechanics, reaction-diffusion systems, and the propagation of nonlinear shallow-water waves. (C) 2018 Elsevier Inc. All rights reserved.
机译:我们介绍了物理知识的神经网络 - 培训的神经网络,以解决监督学习任务,同时尊重通用非线性偏微分方程所描述的任何给定的物理定律。在这项工作中,我们在解决两个主要问题的背景下展示了我们的发展:数据驱动的解决方案和数据驱动的部分微分方程的发现。根据可用数据的性质和布置,我们设计了两种不同类型的算法,即连续时间和离散时间模型。第一种类型的型号形成了一个新的数据有效的时空函数近似器,而后者类型允许使用任意准确的隐式跳动-Kutta时间踏步方案,具有无限数量的阶段。通过流体,量子力学,反应 - 扩散系统中的经典问题和非线性浅水波的传播来证明所提出的框架的有效性。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号