首页> 外文期刊>Journal of chemical theory and computation: JCTC >PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python
【24h】

PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python

机译:Pyberthart:使用基于Python的原型技术的原型技术的相对论实时四组件TDDFT实现

获取原文
获取原文并翻译 | 示例
           

摘要

We present a real-time time-dependent four-component Dirac-Kohn-Sham (RT-TDDKS) implementation based on the BERTHA code. This new implementation takes advantage of modern software engineering, including the prototyping techniques. The software design follows a three step approach: (i) the prototype implementation of a time-propagation algorithm in nonrelativistic real-time TDDFT within the Psi4NumPy framework, which provides a suitable environment for the creation of a clear, readable, and easy to test reference code in Python, (ii) the design of an original Python application programming interface for the relativistic four-component code BERTHA (PyBERTHA), which has an efficient computational kernel for relativistic integrals written in FORTRAN, and (iii) the porting of the time-propagation scheme enveloped within the Psi4NumPy framework to PyBERTHA. The propagation scheme consequently resides in a single readable Python computer code that is easy to maintain and in which the key quantities, such as the Dirac-Kohn-Sham and dipole matrices, can be accessed directly from the PyBERTHA module. For linear algebra operations (matrix-matrix multiplications and diagonalization) we use the highly optimized procedures implemented in the popular NumPy library. The overhead introduced by the Python interface to BERTHA is almost negligible (less than 1% evaluated on the SCF procedure), and the interoperability between different programming languages (FORTRAN, C, and Python) does not affect the numerical stability of the time-propagation scheme. Our new RT-TDDKS implementation has been employed to investigate the stability of the time-propagation procedure in combination with a density-fitting algorithm (both for the Coulomb and for the exchange-correlation matrix construction), which are employed in BERTHA to speed up the Dirac-Kohn-Sham matrix evaluation. On the basis of systematic calculations, employing several density-fitting basis sets of increasing accuracy, we showed that quantitative agreement can be achieved in combination with extended-fitting basis sets, with an error in the Coulomb energy below 1 mu-hartree. Convergence of the transition energies increasing of quality of the fitting basis sets has been also observed. Our data suggest that the error in the Coulomb energy may also represent a good estimate of the fitting basis set quality for real-time electron dynamics simulations. Further, we study the applicability of the RT-TDDKS method in combination with both weak- and extreme strong-field regime. Numerical results of excited-state transitions for the Group 12 atoms are reported and compared with a previous real-time Dirac-Kohn-Sham implementation (Repisky et al. J. Chem. Theory Comput. 2015, 11, 980-991). Finally, calculations of high harmonic generation in the hydrogen molecule and Au dimer have been also carried out. We were able to generate high harmonics with relatively well-defined peaks up to the 21st and 13th order in the case of H-2 and Au-2, respectively. Our findings show that the four-component structure of the Dirac-Kohn-Sham Hamiltonian provides a suitable theoretical framework, with no intrinsic unfavorable features, to study molecules in the strong-field regime.
机译:我们介绍了基于Bertha代码的实时时间依赖性的四组件Dirac-Kohn-Sham(RT-TDK)实现。这种新的实现利用了现代软件工程,包括原型技术。软件设计遵循三步方法:(i)PSI4Numpy框架内非素描实时TDDFT中的时间传播算法的原型实现,为创建清晰,可读且易于测试提供合适的环境Python中的参考代码,(ii)用于相对论的四组件代码Bertha(Pybertha)的原始Python应用程序编程接口的设计,其具有在Fortran中写入的相对论积分的有效计算内核,(iii)的移植在PSI4Numpy框架内包围的时间繁殖方案到拟柏塔。因此,传播方案因此驻留在单个可读的Python计算机代码中,易于维护,并且可以直接从拟柏上的模块访问诸如Dirac-Kohn-Sham和偶极矩阵的键量。对于线性代数操作(矩阵矩阵乘法和对角),我们使用在流行的Numpy库中实现的高度优化的过程。由Python接口引入Bertha的开销几乎可以忽略不计(在SCF程序中评估的1%),不同编程语言(FORTRAN,C和PYTHON)之间的互操作性不会影响时间传播的数值稳定性方案。已经采用我们的新的RT-TDDK实现来研究时间传播过程的稳定性与密度拟合算法(用于库仑和交换相关矩阵建设),其在Bertha加速Dirac-Kohn-Sham矩阵评估。在系统计算的基础上,采用多种密度拟合的基础幅度提高准确性,我们表明,定量协议可以与延长拟合的基础集合实现,在1亩海拔低于1亩的库仑能量中出错。还观察到过渡能量的融合增加了拟合基集的质量。我们的数据表明库仑能量中的误差还可以代表拟合基础设定适用于实时电子动力学模拟的良好估计。此外,我们研究了RT-TDDK方法的适用性与弱弱和极端的强场制度相结合。报告了第12类原子的激发态转变的数值结果,并与先前的实时DIRAC-KOHN-SHAM实施进行了比较(REPISKY等人J.Chem.理论计算。2015,11,980-991)。最后,还进行了氢分子和Au二聚体中高谐波产生的计算。在H-2和AU-2的情况下,我们能够产生具有相对明确定义的峰值的高谐波,同时在H-2和AU-2的情况下。我们的研究结果表明,Dirac-Kohn-Sham Hamiltonian的四组成结构提供了一个合适的理论框架,没有内在的不利特征,在强大的场地中研究分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号