...
首页> 外文期刊>Hydrometallurgy >Effect of iron(II) and manganese(II) on oxidation and co-precipitation of cobalt(II) in ammonia/ammonium carbonate solutions during aeration - An update and insight to cobalt losses in the Caron process for laterite ores
【24h】

Effect of iron(II) and manganese(II) on oxidation and co-precipitation of cobalt(II) in ammonia/ammonium carbonate solutions during aeration - An update and insight to cobalt losses in the Caron process for laterite ores

机译:铁(II)和锰(II)对氨基/碳酸铵溶液中钴(II)氧化和共析沉淀的影响 - 在红外矿石中的Caron过程中钴损失的更新和见解

获取原文
获取原文并翻译 | 示例
           

摘要

The Caron process involves the roasting of nickel laterite ore at 750 degrees C with fuel oil to produce a calcine containing Fe-Ni-Co alloy and other reacted or unreacted host minerals. The leaching of the calcine in the form of a quenched slurry in ammonia/ammonium carbonate solutions at pH similar to 10 and 45 degrees C under anaerobic and aerobic conditions sequentially dissolves alloy to iron(II), nickel(II) and cobalt(11), oxidizes iron(II), precipitates iron(III) and allows the discard of iron rich tailings after counter current decantation and steam stripping of ammonia and carbon dioxide for recycling. Oxidation of aqueous cobalt(11) during aeration in the Caron Process is one of the critical steps to reduce the incorporation of cobalt into the tailings. Cobalt(II) species which are co-precipitated with the iron phase are not able to be leached back into solution and lost to the tailings, but cobalt(III) remains in solution. Fast oxidation of cobalt(II) to cobalt(III) is expected to minimise the co-precipitation of cobalt(II) during iron precipitation, resulting in smaller losses of cobalt to tailings. Results from this study show that the oxidation of cobalt(II) species (1 g L-1) in a synthetic ammonia / ammonium carbonate (SAC) solution containing 5.3 M NH3/NH4 (+)(total) and 1.5 M HCO3- is relatively slow at room temperature and follows first order kinetics with respect to cobalt(II) concentration. The rate of reaction is temperature dependent with an activation energy of 65.8 kJ mol(-1). The presence of manganese(II) and iron(II) increases the rate of oxidation of cobalt(II) when compared to that of cobalt(II) alone. The oxidation of cobalt(H) occurs only after most of iron(II) is oxidised to iron(III) solids which facilitates the co-precipitation of cobalt(II). The variation of the concentration of manganese(II) (0.025-1.25 g L-1) in SAC solution demonstrates minimal effect on cobalt oxidation. Analysis of the solids, using XRD, show that the final solid formed in the laboratory test by the aeration of iron(II) in SAC solution consisted of goethite and ferrihydrite and that formed by the aeration of manganese(II) in SAC solution was rhodochrosite (MnCO3). While the iron oxide precipitated during the oxidation of Fe(II) and Co(II) for 111 in the laboratory test contains 0.38% Co, the cobalt content in solids formed in aerated tanks in the Caron processing plant increases from 0.15% in Tank 1 to 0.17% in Tank 4, but in all cases too low to be detected in XRD scans.
机译:Caron方法涉及在750℃下用燃料油焙烧镍红土矿石,以产生含有Fe-Ni-Co合金的煅烧物和其他反应或未反应的宿主矿物质。在厌氧和有氧条件下在pH下在pH下氨/碳酸铵溶液中淬火浆料的浸出浆料的浸出依次溶解于合金(II),镍(II)和钴(11) ,氧化铁(II),沉淀铁(III),并在逆流倾析和蒸汽剥离后丢弃铁富尾尾,用于回收氨和二氧化碳。在Caron工艺中通气期间含水钴(11)的氧化是减少钴掺入尾矿的关键步骤之一。用铁相沉淀的钴(II)钴(II)物种不能被浸入溶液中并损失到尾矿,但钴(III)仍保留在溶液中。预计钴(II)至钴(III)的快速氧化将在铁沉淀过程中最小化钴(II)的共析沉淀,导致甲钴的损失较小。本研究结果表明,含有5.3M NH 3 / NH 4(+)(总)和1.5M HCO3-的合成氨/碳酸铵(SAC)溶液中的钴(II)种(1g L-1)氧化在室温下相对较慢,并遵循关于钴(II)浓度的第一阶动力学。反应速率是温度依赖于65.8kJ摩尔(-1)的活化能。与单独的钴(II)相比,锰(II)和铁(II)的存在增加了钴(II​​)的氧化速率。在将大多数铁(II)氧化成铁(III)固体后,钴(H)的氧化仅发生,这促进了钴(II​​)的共析出。囊溶液中锰(II)浓度(0.025-1.25g L-1)的变化表明对钴氧化的最小效果。使用XRD的固体分析,表明,通过囊溶液中的铁(II)在实验室测试中形成的最终固体由甲酸酯和Ferrihydite组成,并且通过囊溶液中的锰(II)的曝气形成为菱烃(mnco3)。虽然在实验室试验中,在Fe(II)和Co(II)氧化期间沉淀的氧化铁含有0.38%Co,但在肉体加工厂的气化槽中形成的固体中的钴含量从罐1中的0.15%增加坦克4的0.17%,但在所有情况下都在XRD扫描中检测到太低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号