首页> 外文期刊>Theoretical and Applied Genetics: International Journal of Breeding Research and Cell Genetics >Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth
【24h】

Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth

机译:贝叶斯估计与利用高通量遥感指标对叶生长定量遗传分析

获取原文
获取原文并翻译 | 示例
           

摘要

Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A(max)) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A(max), because these two indices were genetically correlated with A(max) across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A(max) improves model fit over the initial model. The mtci and pri2 indices also outperform direct A(max) measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.
机译:表征在组织化期间改变的特征的遗传基础,影响植物性能是进化生物学和农学的主要目标。描述专门调节形态特征的遗传程序可以通过生理性状的基因型差异复杂化。我们使用新型贝叶斯函数值特性(FVT)在异构场环境中提出的芸苔属Rapa重组自交系中的新型贝叶斯函数值特性(FVT)建模方法来描述叶子的生长轨迹。虽然频率差异通过对待每种实验重复的方式离径地进行估计参数值,但贝叶斯模型可以利用全局数据集中的信息,可能导致更强大的特征估计。我们通过在缺失数据面前估计生长渐近和比较贝叶斯和频繁的方法估计的生长轨迹参数的遗传性来说明这种原则。使用伪贝叶斯因素,我们比较初始贝叶斯逻辑生长模型的性能和一种模型,该模型包含碳同化(A(MAX))作为辅助因子,从而统计上核算碳资源的基因型差异。我们进一步评估了两个远程感测的光谱射程索引,光化学反射率(PRI2)和Meris陆生叶绿素指数(MTCI),代替A(MAX),因为这两个指数与跨年和治疗的遗传相关,但治疗又允许与直接叶级气体交换测量相比,吞吐量更高。对于未使用的设置中的叶片长度,包括(MAX)改善模型适合初始模型。 MTCI和PRI2索引还优于直接A(最大)测量。对进化生物学家和植物育种者特别重要,分层贝叶斯模型估算FVT参数与频率接近相比提高遗传性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号