首页> 外文期刊>The ISME journal emultidisciplinary journal of microbial ecology >Defining lower limits of biodegradation: atrazine degradation regulated by mass transfer and maintenance demand in Arthrobacter aurescens TC1
【24h】

Defining lower limits of biodegradation: atrazine degradation regulated by mass transfer and maintenance demand in Arthrobacter aurescens TC1

机译:定义生物降解的较低限制:通过传质Anurescens TC1中的传质和维持需求调节的阿特拉津降解

获取原文
获取原文并翻译 | 示例
           

摘要

( )Exploring adaptive strategies by which microorganisms function and survive in low-energy natural environments remains a grand goal of microbiology, and may help address a prime challenge of the 21st century: degradation of man-made chemicals at low concentrations ("micropollutants"). Here we explore physiological adaptation and maintenance energy requirements of a herbicide (atrazine)-degrading microorganism (Arthrobacter aurescens TC1) while concomitantly observing mass transfer limitations directly by compound-specific isotope fractionation analysis. Chemostat-based growth triggered the onset of mass transfer limitation at residual concentrations of 30 mu g L-1 of atrazine with a bacterial population doubling time (t(d)) of 14 days, whereas exacerbated energy limitation was induced by retentostat-based near-zero growth (t(d) = 265 days) at 12 +/- 3 mu g L-1 residual concentration. Retentostat cultivation resulted in (i) complete mass transfer limitation evidenced by the disappearance of isotope fractionation (epsilon C-13 = -0.45%o +/- 0.36 parts per thousand) and (ii) a twofold decrease in maintenance energy requirement compared with chemostat cultivation. Proteomics revealed that retentostat and chemostat cultivation under mass transfer limitation share low protein turnover and expression of stress-related proteins. Mass transfer limitation effectuated slow-down of metabolism in retentostats and a transition from growth phase to maintenance phase indicating a limit of similar or equal to 10 mu g L-1 for long-term atrazine degradation. Further studies on other ecosystem-relevant microorganisms will substantiate the general applicability of our finding that mass transfer limitation serves as a trigger for physiological adaptation, which subsequently defines a lower limit of biodegradation.
机译:()探索微生物功能并在低能量自然环境中存活的自适应策略仍然是微生物学的隆重目标,并且可能有助于解决21世纪的主要挑战:低浓度(“微拷贝”)的人造化学物质的降解。在这里,我们探讨除草剂(亚唑嗪) - 凝固微生物(关节杆菌AUNSCENS TC1)的生理适应和维护能量要求,同时通过复合特异性同位素分馏分析伴随着直接观察质量转移限制。基于化疗的生长引发了在14天的细菌种群倍增时间(T(D))的30μgL-1的残留浓度下的质量转移限制的发作,而通过基于RetentoStat的附近诱导恶化的能量限制-Zero生长(T(d)= 265天),12 +/-3μgl-1残留浓度。 RetentoStat培养导致(i)同位素分馏消失(εc-13 = -0.45%O +/- 0.36份)和(ii)与化学稳定剂相比,维护能量要求的双重降低证明了(εc-13 = -0.45%)的完全传质限制。栽培。蛋白质组学揭示了质量转移限制下的RetentoStat和Chemostat培养份额低蛋白质周转和应力相关蛋白的表达。传质限制依赖静止液中的代谢减缓,并且从生长阶段到维持期的转变,这表明用于长期尿嘧啶降解的相似或等于10μg1-1的极限。关于其他生态系统相关的微生物的进一步研究将证实我们发现的一般适用性,即传质限制用作生理适应的触发,其随后定义了生物降解的下限。

著录项

  • 来源
  • 作者单位

    Helmholtz Zentrum Munchen Inst Groundwater Ecol Ingolstadter Landstr 1 D-85764 Munich Bavaria Germany;

    Helmholtz Zentrum Munchen Inst Groundwater Ecol Ingolstadter Landstr 1 D-85764 Munich Bavaria Germany;

    Helmholtz Zentrum Munchen Inst Groundwater Ecol Ingolstadter Landstr 1 D-85764 Munich Bavaria Germany;

    Helmholtz Zentrum Munchen Core Facil Prote Heidemannstr 1 D-80939 Munich Germany;

    Helmholtz Zentrum Munchen Inst Groundwater Ecol Ingolstadter Landstr 1 D-85764 Munich Bavaria Germany;

    Helmholtz Zentrum Munchen Inst Groundwater Ecol Ingolstadter Landstr 1 D-85764 Munich Bavaria Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号