...
首页> 外文期刊>The European physical journal: Special topics >High strain rates testing and constitutive modeling of B500B reinforcing steel at elevated temperatures
【24h】

High strain rates testing and constitutive modeling of B500B reinforcing steel at elevated temperatures

机译:高温升高温度下B500B加固钢的高应变率测试及本构模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the response of the building materials under extreme condition of loading (blast and impact events) and temperature (fire) is fundamental for civil engineers to design safe structures for civil or defense applications. In this paper an experimental investigation on the influence of the combined effects of high strain rate and elevated temperature on the mechanical properties of B500B reinforcing steel in tension is presented. The quasi-static tensile tests have been performed at temperatures of 20 degrees C, 200 degrees C, 400 degrees C and 600 degrees C under steady-state conditions at ETH Zurich, using a closed-loop strain rate control system. The mechanical characterization at high strain rate has been performed by means of a Split Hopkinson Tensile Bar installed at the DynaMat Laboratory (SUPSI). In order to evaluate the extreme combined effect of dynamic loadings and elevated temperatures a water-cooled induction heating system was used. The tensile stress-strain response of B500B steel is found to depend strongly on both the applied strain rate and the test temperature. Dynamic tests at room temperature highlight an increase of strength and strain capacities. At high strain rate the increase of the temperature causes a decrease of strength, strain and energy absorbed in the plastic deformation. The strain hardening rate of this material is analysed as a function of strain rate and temperature. Two widely used constitutive laws (Johnson-Cook and Cowper-Symonds) have been calibrated. Numerical and experimental results have been compared. This research provides new data that starts to cover the lack of information about this widely used reinforcing steel in reinforced concrete structures. The degradation factors of different mechanical properties of B500B steel can be used by the designer in case of multi-hazard scenario, such as fire followed by an explosion.
机译:了解在荷载(爆炸和影响事件)和温度(火)下的建筑材料的响应是土木工程师的基础,用于设计民用或防御应用的安全结构。本文介绍了对高应变率和升高温度对张力张力下B500B增强钢力学性能影响的实验研究。使用闭环应变速率控制系统,在Eth苏黎世的稳态条件下在20℃,200℃,400℃和600℃的温度下进行准静态拉伸试验。通过安装在Dynamat实验室(Supsi)的分裂霍普金森张拉杆进行高应变速率以高应变速率进行的机械表征。为了评估动态载荷的极端综合效果和升高的温度,使用了水冷的感应加热系统。发现B500B钢的拉伸应力 - 应变响应强烈依赖于应用应变速率和测试温度。在室温下动态测试突出了强度和应变能力的增加。在高应变速率下,温度的增加导致塑性变形中吸收的强度,应变和能量的降低。作为应变速率和温度的函数分析该材料的应变硬化速率。已经校准了两个广泛使用的本质规则(约翰逊 - 库克和瑟姆 - 叙事)。数值和实验结果进行了比较。本研究提供了新数据,该数据开始涵盖钢筋混凝土结构中缺乏有关这种广泛使用的加强钢的信息。设计师在多危险场景的情况下,设计人员可以使用不同机械性能的降解因素,例如爆炸之后的爆炸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号