首页> 外文期刊>The Astrophysical Journal. Letters >SPATIALLY RESOLVED l-C3H+ EMISSION IN THE HORSEHEAD PHOTODISSOCIATION REGION: FURTHER EVIDENCE FOR A TOP-DOWN HYDROCARBON CHEMISTRY
【24h】

SPATIALLY RESOLVED l-C3H+ EMISSION IN THE HORSEHEAD PHOTODISSOCIATION REGION: FURTHER EVIDENCE FOR A TOP-DOWN HYDROCARBON CHEMISTRY

机译:在马背光度分离区域的空间解决的L-C3H +排放:自上而下的碳氢化合物化学的进一步证据

获取原文
获取原文并翻译 | 示例
           

摘要

Small hydrocarbons, such as C2H, C3H, and C3H2 are more abundant in photo-dissociation regions (PDRs) than expected based on gas-phase chemical models. To explore the hydrocarbon chemistry further, we observed a key intermediate species, the hydrocarbon ion l-C3H+, in the Horsehead PDR with the Plateau de Bure Interferometer at high-angular resolution (6 ''). We compare with previous observations of C2H and c-C3H2 at similar angular resolution and new gas-phase chemical model predictions to constrain the dominant formation mechanisms of small hydrocarbons in low-UV flux PDRs. We find that at the peak of the HCO emission (PDR position), the measured l-C3H+, C2H, and c-C3H2 abundances are consistent with current gas-phase model predictions. However, in the first PDR layers, at the 7.7 mu m polycyclic aromatic hydrocarbon band emission peak, which are more exposed to the radiation field and where the density is lower, the C2H and c-C3H2 abundances are underestimated by an order of magnitude. At this position, the l-C3H+ abundance is also underpredicted by the model but only by a factor of a few. In addition, contrary to the model predictions, l-C3H+ peaks further out in the PDR than the other hydrocarbons, C2H and c-C3H2. This cannot be explained by an excitation effect. Current gas-phase photochemical models thus cannot explain the observed abundances of hydrocarbons, in particular, in the first PDR layers. Our observations are consistent with a top-down hydrocarbon chemistry, in which large polyatomic molecules or small carbonaceous grains are photo-destroyed into smaller hydrocarbon molecules/precursors.
机译:基于气相化学模型的光离解区域(PDR)在光离解区域(PDR)中比预期的小碳氢化合物比预期更丰富。为了进一步探索烃化学,我们在高角度分辨率(6'')中观察到烃基PDR中的循环中间物种,烃离子L-C3H +。我们与先前的C2H和C-C3H2观察结果相比,在类似的角度分辨率和新的气相化学模型预测中,以限制低UV通量PDR中的小烃的显性形成机制。我们发现,在HCO发射(PDR位置)的峰值处,测量的L-C3H +,C2H和C-C3H2丰度与当前的气相模型预测一致。然而,在第一个PDR层中,在7.7μm多环芳烃带发射峰值,其更暴露于辐射场并且密度较低,C2H和C-C3H2丰度被幅度级低估。在这个位置,L-C3H +丰度也受模型的绝望,但只有几倍的尺寸。另外,与模型预测相反,在PDR中进一步除去比其他烃,C2H和C-C3H2进一步。这不能通过激发效果来解释。因此,当前的气相光化学模型因此不能解释观察到的烃的丰度,特别是在第一PDR层中。我们的观察结果与自上而下的烃化学一致,其中大型多元分子或小碳质晶粒是光 - 破坏较小的烃分子/前体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号