首页> 外文期刊>Quantum information processing >Quantum path computing: computing architecture with propagation paths in multiple plane diffraction of classical sources of fermion and boson particles
【24h】

Quantum path computing: computing architecture with propagation paths in multiple plane diffraction of classical sources of fermion and boson particles

机译:量子路径计算:计算架构,具有传播路径的传播路径,在FERMION和玻色子颗粒的经典来源的多个平面衍射中

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum computing (QC) architectures utilizing classical or coherent resources with Gaussian transformations are classically simulable as an indicator of the lack of QC power. Simple optical setups utilizing wave-particle duality and interferometers achieve QC speed-up with the cost of exponential complexity of resources in time, space or energy. However, linear optical networks composed of single-photon inputs and photon number measurements such as boson sampling achieve solving problems which are not efficiently solvable by classical computers while emphasizing the power of linear optics. In this article, quantum path computing (QPC) setup is introduced as the simplest optical QC satisfying five fundamental properties all-in-one: exploiting only the coherent sources being either fermion or boson, i.e., Gaussian wave packet of standard laser, simple setup of multiple plane diffraction (MPD) with multiple slits by creating distinct propagation paths, standard intensity measurement on the detector, energy-efficient design and practical problem solving capability. MPD is unique with non-Gaussian transformations by realizing an exponentially increasing number of highly interfering propagation paths while making classical simulation significantly hard. It does not require single-photon resources or number resolving detection mechanisms making the experimental implementation of QC significantly low complexity. QPC setup is utilized for the solutions of specific instances of two practical and hard number theoretical problems: partial sum of Riemann theta function and period finding to solve Diophantine approximation. Quantumness of MPD with negative volume of Wigner function is numerically analyzed, and open issues for the best utilization of QPC are discussed.
机译:使用具有高斯转换的经典或相干资源的量子计算(QC)架构是经典的模拟,作为缺乏QC电源的指标。利用波粒子的简单光学设定利用波粒子和干涉仪实现QC加速,随着时间,空间或能量的资源的指数复杂性成本。然而,由单光子输入和光子数测量组成的线性光网络,例如Boson采样,实现了通过经典计算机而无效地解决的解决问题,同时强调线性光学器件的功率。在本文中,将量子路径计算(QPC)设置被引入满足五个基本属性的最简单的光学QC:仅利用连贯的源是FERMION或BOSON,即标准激光的高斯波浪包,简单的设置多个平面衍射(MPD)具有多个狭缝,通过在探测器中产生不同的传播路径,标准强度测量,节能设计和实际问题解决能力。由于在显着努力地实现了经典模拟的同时,实现了非高斯变换的非高斯变换是独一无二的。它不需要单光子资源或数字解析检测机制,使得QC的实验实施显着低。 QPC设置用于两个实际和硬度理论问题的特定实例的解决方案:riemannθ的部分和函数和期间发现求解辅助近似。数值分析了具有负体积的Wigner函数负量的MPD量子度,并讨论了用于最佳利用QPC的开放问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号