首页> 外文期刊>Structural and multidisciplinary optimization >Selection of the scaling factor in finite element-based gradientless shape optimization for a consistent step size
【24h】

Selection of the scaling factor in finite element-based gradientless shape optimization for a consistent step size

机译:选择基于元素的渐变形状优化中的缩放因子,实现一致的步长

获取原文
获取原文并翻译 | 示例
           

摘要

Finite element-based gradientless shape optimization methods are easily implemented and can successfully result in component designs with desired functional improvements. However, because they are not mathematically rigorous, the specific optimization formulation can affect the resulting geometry and the achievement of the optimization goal. A method is developed for biological-based shape optimization schemes which adjusts the scaling factor by a function of both the current element size and stress state so that a nearly constant rate of shape change is maintained over the course of the optimization, despite the approach towards the optimization goal. The effectiveness of the developed method is compared to a constant scaling factor, ones that are a function of either the current mesh or the current stress state alone. If the achievement of the optimization goal is defined as a desired amount of improvement in the stress state over that in the initial solution, the optimal solution was found to be path-independent and not influenced by the scaling factor used. However, the developed method provides a more consistent and efficient means of attaining the optimal geometry and can be used for any mesh or applied load. The method was implemented to successfully optimize the outer profile of a cantilever beam, the central hole of a biaxially loaded infinite plate, and both surfaces of a hollow cylinder under combined compression, torsion, and bending loads. The presented method may be particularly useful in parametric studies or when evaluating the sensitivities of the optimal design to different environmental conditions.
机译:基于有限元的渐变形状优化方法很容易实现,并且可以成功地导致具有所需功能改进的组件设计。然而,由于它们不是在数学上严格的,所以特定的优化制剂可以影响所产生的几何形状和实现优化目标。一种方法是为基于生物学的形状优化方案开发的方法,其通过电流元素尺寸和应力状态的函数调整缩放因子,使得尽管朝向的方法,但是在优化过程中保持了几乎恒定的形状变化率优化目标。将开发方法的有效性与恒定的缩放因子相比,这是当前网格或仅当前应力状态的函数。如果优化目标的实现被定义为在初始解决方案中的应力状态的所需量,则发现最佳解决方案是无关的,并且不受所使用的缩放因子的影响。然而,开发的方法提供了一种更一致且有效的方法,可以获得最佳几何形状,并且可用于任何网格或施加的负载。该方法被实施为成功优化悬臂梁的外部轮廓,双轴加载的无限板的中心孔,以及在组合压缩,扭转和弯曲载荷下的中空圆柱的两个表面。呈现的方法在参数研究中可能特别有用,或者当评估最佳设计的敏感性到不同的环境条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号