...
首页> 外文期刊>Soil Biology & Biochemistry >Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential
【24h】

Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential

机译:Switchgrass(Panicum Virgatum)根生物量和土壤水势控制的微生物细胞外多糖的产生和骨料稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Deep-rooting perennial grasses are promising feedstocks for biofuel production, especially in marginal soils lacking organic material, nutrients, and/or that experience significant water stress. Perennial grass roots influence surrounding soil conditions and microbial activities, and produce extracellular polymeric substances (EPS) composed primarily of extracellular polysaccharides (EPSac). These polymers can alleviate microbial moisture and nutrient stress, and enhance soil characteristics through improved water retention and aggregate stability-which may in turn enhance carbon persistence. In this study we used a (CO2)-C-13 greenhouse tracer experiment to examine the effect of switchgrass cultivation on EPSac production and origin in a marginal soil with five fertilization/water treatments (control, +N, +NP, +P, low water), and compared these results with measurements of field soils collected after long-term switchgrass cultivation. Soils with added nitrogen and phosphorus (+NP) had the highest root biomass, EPSac and percentage of water-stable soil aggregates. Multiple linear regression analyses revealed that root biomass and soil water potential were important determinants of soil EPSac production, potentially by controlling carbon supply and diurnal changes in moisture stress. Path analysis showed that soil aggregation was positively correlated with bulk soil EPSac content and also regulated by soil water potential. High mannose content indicated the majority of EPSac was of microbial origin and (CO2)-C-13 labeling indicated that 0.18% of newly fixed plant carbon was incorporated into EPSac. Analysis of field soils suggests that EPSac is significantly enhanced after long-term switchgrass cultivation. Taken as a whole, our greenhouse and field results demonstrate that switchgrass cultivation can promote microbial production of EPSac, providing a mechanism to enhance aggregation in marginal soils.
机译:生根的多年生草是用于生物燃料生产的前途原料,特别是在缺乏有机材料,营养素和/或经历显着水分压力的边缘土壤中的原料。多年生草根围绕土壤条件和微生物活性的影响,并产生主要由细胞外多糖(EPSAC)组成的细胞外聚合物物质(EPS)。这些聚合物可以缓解微生物水分和营养应激,通过改善水保留和骨料稳定性来增强土壤特性 - 这可能又可以提高碳持久性。在这项研究中,我们使用了(二氧化碳)-C-13温室示踪剂试验,研究了换肤栽培对ePSAC生产的影响,并在边缘土壤中具有五种施肥/水处理(对照,+ N,+ NP,+ P,低水),并将这些结果与长期换肤栽培后收集的现场土壤进行了比较。添加氮和磷(+ NP)的土壤具有最高的根生物质,EPSAC和水稳定土壤聚集体的百分比。多元线性回归分析显示,根生物质和土壤水势是土壤Epsac生产的重要决定因素,可能通过控制水分胁迫的碳供应和昼夜变化。路径分析表明,土壤聚集与散装土壤EPSAC含量正相关,并通过土壤水势调节。高甘露糖含量表明大多数EPSAC是微生物来源的,(CO2)-C-13标记表明,将0.18%的新固定植物碳掺入EPSAC中。现场土壤分析表明,长期交叉草栽培后EPSAC显着提高。作为一个整体,我们的温室和现场结果表明,切换栽培可以促进EPSAC的微生物生产,提供了增强边缘土壤聚集的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号