首页> 外文期刊>Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration >Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Massive, semi-massive and sulfide-matrix breccia ores
【24h】

Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Massive, semi-massive and sulfide-matrix breccia ores

机译:Magmatic Ni-Cu-PGE硫化物矿矿床中的硫化物 - 硅酸盐纹理:大规模,半大米和硫化物 - 基质Breccia Ores

获取原文
获取原文并翻译 | 示例
           

摘要

Much of the value of magmatic Ni-Cu-PGE sulfide orebodies is contained within massive or semi-massive ores that show a wide variety of textural relationships to included or adjacent silicate rocks. We identify five mutually gradational textural types: (1) pure inclusion-free massive sulfide ores; (2) sulfide matrix ore breccias, of sharp-wall, soft-wall or mixed character; (3) emulsion textured ores formed by frozen mixtures of molten silicate and sulfide, most commonly developed as melt films at thermal erosion contacts; (4) vein-hosted sulfides formed at late magmatic or high temperature post-emplacement deformation stage close to the brittle-ductile transition in the country rocks or host igneous bodies; and (5) tectonic "durchbewegung" breccias, formed by mechanical inter-shearing of less-ductile silicate inclusions and more-ductile solid sulfides. Some deposits, the Moran Shoot at Kambalda being the type example, record the invasion of country rock footwall by downward- or sideways-percolating superheated molten sulfide liquid generating vertical sequences of pure massive sulfide, emulsion textured ores and finely-spaced invasive sulfide veins; these are referred to as sulfide melting-infiltration fronts and may provide a clue to the mechanism of formation of sulfide-rich magmatic ores as whole. Sulfide matrix ore breccias are particularly well developed in the Voisey's Bay and Aguablanca deposits, where they developed by flooding of percolating sulfide melt through the silicate matrix of magmatic intrusion breccias, displacing silicate melt. The lithology of the silicate or carbonate rock inclusions determines the nature of the inclusion-matrix relationships. Non-refractory inclusions typically disaggregate along original grain boundaries to leave coherent inclusions surrounded by clouds of inclusion-derived or matrix-derived crystals, with the low-melting silicate component preferentially displaced by sulfide liquid, whereas refractory inclusions retain sharp boundaries. Zonation of inclusions and overgrowths preserves reaction between inclusion and silicate matrix that pre-dates invasion of the intrusion breccia by sulfide liquid. The process of percolation of dense, low-viscosity sulfide liquid into pore space and fractures within partially molten (or melting) silicate rock is a unifying theme that links sulfide matrix ore breccias and emulsion textured ores with distinctive textures in less sulfide rich rocks such as net-texture (matrix ore texture), leopard texture (poikilitic net texture) and interspinifex ore. Vein-hosted massive sulfides may be emplaced under magmatic conditions where the excess pressure of the sulfide liquid column drives or enhances fracturing of the country rock and injection of sulfide into the cracks. Such veins are commonly referred to as "remobilised", a term which may obscure process understanding and should be reserved for cases where tectonic solid-state mobilisation of sulfide can be demonstrated on textural and structural grounds. The tendency of sulfide liquids to invade country rocks and potentially to drive the propagation of their own magmatic containers may be a critical feedback loop in the development of magmatic sulfide mineral systems.
机译:Magmatic Ni-Cu-PGE硫化物矿物质的大部分含量包含在大规模或半巨大的矿石内,其显示出包括包括或相邻的硅酸盐岩石的各种纹理关系。我们识别五种相互级别的纹理类型:(1)纯包装的大规模硫化物矿石; (2)硫化物基质矿石Breccias,锐壁,软壁或混合特性; (3)由熔融硅酸盐和硫化物的冷冻混合物形成的乳液纹理矿石,最常见于热腐蚀触点的熔体薄膜; (4)在晚期岩石或高温后施加后硫化物的静脉染色硫化物,靠近乡村岩石或托管的脆性延展性转变; (5)构造“DurchBeegung”Breccias,通过机械相互剪切形成的较低延性硅酸盐夹杂物和更多延性的固体硫化物。一些沉积物,莫兰拍摄于kambalda是类型的例子,通过向下或横向渗透过热的熔融硫化物液体产生垂直序列的纯大规模硫化物,乳液纹理矿石和细间距的侵入性硫化物静脉的局部岩石鞋的入侵;这些被称为硫化物熔融渗透前线,并且可以为整体提供富含硫化物的岩浆矿石的机制的线索。硫化物基质矿石Breccias在Voisey的湾和Aguablanca沉积物中特别良好地发育,在那里它们通过渗透硫化物熔体通过硅酸盐侵入Breccias的硅酸盐基质而产生的渗透,使硅酸盐熔体膨胀。硅酸盐或碳酸盐岩石夹层的岩性决定了包涵基质关系的性质。非难治性夹杂物通常沿着原始晶粒边界分解,以留出由夹杂物衍生的或基质衍生的晶体云包围的相干夹杂物,其中低熔点硅酸盐组分优先被硫化物液体移位,而耐火夹杂物保持尖锐的边界。夹杂物和过度生长的分区保持夹杂物和硅酸盐基质之间的反应,其硫化物液体预侵入侵入Breccia的反应。致密,低粘度的硫化物液体渗入孔隙空间和部分熔融(或熔化)硅酸盐岩中的骨折是将硫化物基质矿石Brecias和乳液纹理矿石链接在较少的硫化物富含岩石中,如净纹理(矩阵矿石纹理),豹纹纹理(波西米净纹理)和interspinifex矿石。静脉托管的大规模硫化物可以在岩浆条件下施加,其中硫化物液体塔的过量压力驱动或增强乡村岩石的压裂并将硫化物注射到裂缝中。这种静脉通常被称为“重复化”,这是一个可能模糊过程理解的术语,应该保留用于在纹理和结构场上证明硫化物的构造固态动员的情况。硫化物液体到侵入乡村岩石的趋势,并且可能导致其自身岩石容器的繁殖可以是岩浆硫化物矿物系统发展中的关键反馈回路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号