...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Coastal and inland water pixels extraction algorithm (WiPE) from spectral shape analysis and HSV transformation applied to Landsat 8 OLI and Sentinel-2 MSI
【24h】

Coastal and inland water pixels extraction algorithm (WiPE) from spectral shape analysis and HSV transformation applied to Landsat 8 OLI and Sentinel-2 MSI

机译:沿海和内陆水像素提取算法(擦拭)从频谱形状分析和HSV转换应用于Landsat 8 Oli和Sentinel-2 MSI

获取原文
获取原文并翻译 | 示例
           

摘要

Identification of water pixels over natural water bodies is a prerequisite step prior to applying algorithms dedicated to the estimation of bio-optical properties of surface waters from remote sensing observations. For visible remote sensing sensors, clouds affect the quantity and quality of the observations, directly by hiding part of the scene and indirectly by their shadows. A certain level of confusion could occur for detection of clouds over turbid (i.e. bright) waters and for detection of their shadows over any kind of surface water. Some algorithms exist but their performance is not satisfactory, especially over turbid waters where cloud-free pixels are sometimes classified as cloud or land, leading to a loss of data. This is particularly important for medium spatial resolution observations such as those performed by the Operational Land Imager (OLI) sensor on Landsat-8 or the Multispectral Instrument (MSI) on Sentinel-2 (a and b). In the frame of this study, we developed a two-step algorithm for the extraction of water pixels (referred to as WiPE) for these medium spatial resolution sensors. In contrast to other approaches based on the top of atmosphere (TOA) reflectance, this algorithm uses the Rayleigh-corrected TOA reflectance (rho(rc)(lambda)) as input parameter allowing the spectral signature of each object to be better characterized. The first step, based on the rho(rc)(lambda) spectral shape analysis of each object, allows water pixels to be discriminated from cloud, vegetation, barren land, and constructions pixels. The second step, in which the rho(rc)(lambda) spectra are transferred into the Hue-Saturation-Value space, greatly improves the detection of cloud shadow over waters. This second step, based on the processing of the whole image, does not require any knowledge on the location and altitude of clouds. Thin clouds are identified during the two steps of the algorithm. This algorithm has been successfully tested over a broad range of environmen
机译:在天然水体上识别水像素是在施加专用于遥感观测的表面水的生物光学性质估计的算法之前的前提步骤。对于可见的遥感传感器,云通过隐藏部分场景并间接地通过其阴影间接影响观察的数量和质量。可以发生一定程度的混乱,以检测在混浊(即,明亮)水上的云并以检测它们在任何类型的地表水上检测它们的阴影。存在一些算法,但它们的性能并不令人满意,特别是在无云像素有时被归类为云或土地的混浊水域,导致数据丢失。这对于中等空间分辨率观察尤其重要,例如由Landsat-8或MultiSpectral仪器(MSI)上的运算陆地成像器(OLI)传感器(A和B)上的运算陆地成像器(OLI)传感器执行的那些。在本研究的框架中,我们开发了一种用于提取这些介质空间分辨率传感器的水像素(称为擦拭物)的两步算法。与基于大气层(TOA)反射的其他方法相比,该算法使用瑞利校正的TOA反射率(RHO(RC)(Lambda))作为输入参数,允许每个对象的光谱特征更好地表征。基于每个物体的RHO(RC)(Lambda)的rho(Rc)(Lambda)光谱形状分析,允许从云,植被,贫瘠陆地和结构像素区分水像素。第二步,其中Rho(RC)(Lambda)光谱被转移到Hue饱和度空间中,大大改善了云阴影在水面上的检测。基于整个图像的处理的第二步不需要任何关于云的位置和海拔的知识。在算法的两个步骤中识别薄云。该算法已在广泛的环境范围内成功测试

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号