首页> 外文期刊>Fortschritt-Berichte VDI, Reihe 3. Verfahrenstechnik >GC-based prediction of fuel auto-ignition quality
【24h】

GC-based prediction of fuel auto-ignition quality

机译:基于GC的燃料自燃质量预测

获取原文
获取原文并翻译 | 示例
           

摘要

The early assessment of fuel auto-ignition quality is of paramount importance for any fuel design methodology (cf. discussions in Chapter 1 and in Subsection 2.1.1). Although multiple models for the prediction of pure-component octane number (ON) and cetane number (CN) from molecular structure have been proposed over the course of the last 30 years (DeFries et, al., 1987; Meusinger and Moros, 1999; Yang et al., 2001; Albahri, 2003; Santana et al., 2006; Smolenskii et al., 2008; Lapidus et al., 2008; Katritzky et al., 2010; Creton et, al., 2010; Abdul Jameel et al., 2016), their applicability ranges are largely limited to non-oxygenated hydrocarbon species, i.e., the constituents of fossil fuels. Specifically, the validity of the earlier CN models is restricted to n-alkanes, iso-alkanes and singly substituted alkylbenzenes (DeFries et al., 1987), to alkanes and cycloalkanes (Lapidus et, al., 2008; Smolenskii et al., 2008), or even to iso-alkanes only (Yang et al., 2001). The model of Smolenskii et al. (2008) also returns some strange CN values, e.g., -146.12 for 3-methyl-3-ethylhexane. More recently, Creton et al. (2010) have proposed separate QSPR models for four classes of molecules, i.e., alkanes, cycloalkanes, alkenes and aromatics, and Abdul Jameel et al. (2016) have trained a multiple linear regression model on CN and derived cetane number (DCN) data of 71 hydrocarbons and 54 hydrocarbon blends. The few attempts to extend the range of validity of ON and CN models to oxygenates have generally suffered from a lack of ignition data of adequate quality for the variety of molecular structures. Taylor et, al. (2004), Saldana et al. (2011), Dahmen et al. (2012) and Sennott et, al. (2013a,b) have built QSPR models by gathering data mainly from the experimental CN compendium released by Murphy et, al. (2004), which contains some data on oxygenates. However, only a small set, of CN from this compendium had been measured in an ASTM D613 (2015) cooperative fuels research (CFR) engine, whereas a much larger set of correlated CN had been derived from ertene numbers, from ignition delay data acquired in combustion bomb experiments and from mixture data (Murphy et al., 2004).
机译:对燃料自燃质量的早期评估对于任何燃料设计方法至关重要(参见第1章和第2.1.1款中的讨论)至关重要。虽然在过去30年的过程中提出了多种用于预测来自分子结构的纯组分辛烷值(ON)和十六烷数量(CN)(Defries et,Al,1987; Meusinger和Moros,1999;杨等人,2001; Albahri,2003; Santana等,2006; Smolenskii等,2008; Lapidus等,2008; Katritzky等,2010; Creton等,Al。,2010; Abdul Jameel等Al。,2016),其适用性范围主要限于非含氧烃物种,即化石燃料的成分。具体地,较早的CN模型的有效性仅限于N-烷烃,异烷烃和单烷基苯苯苯胺(Defries等,1987),烷基烷基和环烷烃(Lapidus等,Al。,2008; Smolenskii等, 2008年),甚至仅为iso-alkanes(Yang等,2001)。 Smolenskii等人的模型。 (2008)还返回一些奇怪的CN值,例如3-甲基-3-乙基己烷-146.12。最近,Creton等人。 (2010)已经提出了四种分子的单独QSPR模型,即烷烃,环烷烃,烯烃和芳烃,以及ABDUL JAMEEL等人。 (2016)训练了在CN和衍生的十六烷值(DCN)数据上的多元线性回归模型,71个烃和54个烃共混物。少数尝试将ON和CN模型的有效范围扩展到含氧化合物的速度通常缺乏用于各种分子结构的充足质量的点火数据。泰勒等,al。 (2004),Saldana等。 (2011),Dahmen等人。 (2012)和Sennott et,Al。 (2013A,B)通过主要从Murphy et,Al释放的实验CN纲要来收集数据,建立了QSPR模型。 (2004),其中包含有关含氧化合物的一些数据。然而,在ASTM D613(2015)协同燃料研究(CFR)发动机中,仅测量来自该纲要的CN的一小部分,而从获取的点火延迟数据,从ertene数衍生出了更多的相关CN。在燃烧炸弹实验和混合数据中(Murphy等,2004)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号