Capillary condensation and capillary pressure of methane in carbon nanopores: Molecular Dynamics simulations of nanoconfinement effects
首页> 外文期刊>Fluid Phase Equilibria >Capillary condensation and capillary pressure of methane in carbon nanopores: Molecular Dynamics simulations of nanoconfinement effects
【24h】

Capillary condensation and capillary pressure of methane in carbon nanopores: Molecular Dynamics simulations of nanoconfinement effects

机译:碳纳米孔中甲烷毛细血管缩合和毛细管压力:纳米罚效应的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractTwo main groups of thought have emerged over the past decade to improve thermodynamic modeling of capillary condensation of nanoconfined fluids. One approach has been developed on the premise of using shifted critical parameters for the condensed phase to account for the wall-fluid interactions, while the other one considers a pressure difference across the interface between the condensed and the bulk phases. This pressure difference is the capillary pressure that exists across a curved meniscus formed in a capillary pore. For nanoconfinement, a modified Laplace equation has been utilized to calculate the capillary pressure to take into account the confinement effects that become more prominent as the pore size reduces. For small pores of a few nanometers in size, however, the impact of structural forces known as nanoconfinement effects, on the pressure of the confined phase becomes more significant. In this work, we studied the capillary pressure of methane at the capillary condensation point in graphite pores smaller than 7?nm, to verify whether the confined phase can experience a negative pressure at capillary condensation point and whether we can accurately predict this pressure from thermodynamic equations. For this purpose, we used Molecular Dynamics (MD) simulations to investigate the pressure of methane molecules confined in graphite pores of various sizes. Furthermore, normal and tangential pressures of methane in selected pore sizes were obtained during capillary condensation at constant pressure. Our results indicated that for small pores there is a critical size below which capillary condensation did not occur. For larger pores, on the other
机译:<![CDATA [ 抽象 在过去十年中出现了两个主要的思路,以改善纳米污染液体凝结的热力学建模。已经开发了一种方法,该前提是使用换档阶段的偏移关键参数来考虑壁流体相互作用,而另一个则认为在凝聚和散装相之间的界面上的压力差。这种压力差是穿过在毛细血管孔中形成的弯曲弯月面存在的毛细管压力。对于纳米核法,已经利用改进的拉普拉斯方程来计算毛细管压力,以考虑随着孔径减少而变得更加突出的限制效果。然而,对于尺寸的小孔,尺寸为几纳米,所谓的结构力被称为纳米罚效应的影响,对受限相的压力变得更显着。在这项工作中,我们研究了小于7Ω·nm的石墨孔中毛细血管缩合点的甲烷的毛细管压力,以验证受限阶段是否可以在毛细血管凝结点处经历负压,以及我们是否可以准确地预测热力学的这种压力方程式。为此目的,我们使用分子动力学(MD)模拟来研究各种尺寸的石墨毛孔中限制的甲烷分子的压力。此外,在含量在恒定压力下在毛细血管缩合期间获得所选孔径中甲烷的正常和切向压力。我们的结果表明,对于小毛孔,临界大小以下,不会发生毛细血管冷凝。对于较大的毛孔,另一个毛孔

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号