首页> 外文期刊>ACS nano >Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces
【24h】

Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces

机译:超疏水纳米结构表面上的电场增强凝聚

获取原文
获取原文并翻译 | 示例
           

摘要

When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q〃 > 2 W/cm~2). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.
机译:当冷凝的液滴在超疏水纳米结构的表面上聚结时,由于多余的表面能转换成动能,所产生的液滴可能会跳跃。与现有技术的逐滴冷凝表面相比,该现象已显示出可将冷凝传热提高多达30%。但是,在液滴跳离表面之后,朝向冷凝表面的蒸汽流的存在会增加对跳动的液滴的阻力,这可能导致液滴完全反转并返回到表面。该效果限制了可能的热传递增强,因为在微滴返回表面时会形成较大的微滴,这会阻碍热传递,直到它们可以通过再次跳跃或最终通过重力脱落而去除为止。通过表征超疏水性纳米结构氧化铜(CuO)表面上凝结过程中的各个液滴轨迹,我们表明,在中等热通量(q〃> 2 W / cm〜2)下,小于R≈30μm的液滴,这种蒸气流夹带主导了液滴的运动。 。随后,我们演示了电场增强的凝结,从而在外部施加电场可防止液滴飞回。这个概念利用了我们最近的见解,即由于疏水涂层上双电层的电荷分离,这些液滴会获得净正电荷。结果,在可伸缩的超疏水性CuO表面上,我们通过实验证明,与没有为低过饱和度(<1.12)施加电场的跳跃液滴表面上的冷凝水总传热系数相比,总冷凝传热系数高50%。这项工作不仅显示出冷凝水传热的显着增强,而且还为改善自清洁和防冰表面以及热敏二极管的性能提供了途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号