首页> 外文期刊>Faraday discussions >Training fully connected networks with resistive memories: impact of device failures
【24h】

Training fully connected networks with resistive memories: impact of device failures

机译:培训具有电阻存储器的完全连接的网络:设备故障的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Hardware accelerators based on two-terminal non-volatile memories (NVMs) can potentially provide competitive speed and accuracy for the training of fully connected deep neural networks (FC-DNNs), with respect to GPUs and other digital accelerators. We recently proposed [S. Ambrogio et al., Nature, 2018] novel neuromorphic crossbar arrays, consisting of a pair of phase-change memory (PCM) devices combined with a pair of 3-Transistor 1-Capacitor (3T1C) circuit elements, so that each weight was implemented using multiple conductances of varying significance, and then showed that this weight element can train FC-DNNs to software-equivalent accuracies. Unfortunately, however, real arrays of emerging NVMs such as PCM typically include some failed devices (e.g., <100% yield), either due to fabrication issues or early endurance failures, which can degrade DNN training accuracy. This paper explores the impact of device failures, NVM conductances that may contribute read current but which cannot be programmed, on DNN training and test accuracy. Results show that "stuck-on" and "dead" devices, exhibiting high and low read conductances, respectively, do in fact degrade accuracy performance to some degree. We find that the presence of the CMOS-based and thus highly-reliable 3T1C devices greatly increase system robustness. After studying the inherent mechanisms, we study the dependence of DNN accuracy on the number of functional weights, the number of neurons in the hidden layer, and the number and type of damaged devices. Finally, we describe conditions under which making the network larger or adjusting the network hyperparameters can still improve the network accuracy, even in the presence of failed devices.
机译:基于双端子非易失性存储器(NVMS)的硬件加速器可能会对GPU和其他数字加速器提供完全连接的深神经网络(FC-DNN)的竞争速度和准确性。我们最近提出了[S. Ambrogio等人,自然,2018]新型神经形态横杆阵列,由一对相变存储器(PCM)器件组成,与一对3晶体管1电容器(3T1C)电路元件组成,从而实现了各自的重量使用不同意义的多个电导,然后显示该权重元件可以将Fc-DNN训练到软件等效的精度。然而,遗憾的是,诸如PCM的新兴NVM的真实阵列通常包括一些失败的设备(例如,<100%收率),由于制造问题或早期耐久性故障,这可能降低DNN训练精度。本文探讨了器件故障,NVM电导的影响,可能有助于读取电流,但不能编程DNN训练和测试精度。结果表明,“陷入困境”和“死亡”装置,分别表现出高低读取的电导,实际上会降低精度性能到某种程度。我们发现基于CMOS的基于和因此高度可靠的3T1C设备的存在大大增加了系统的鲁棒性。在研究固有机制之后,我们研究了DNN精度对功能重量的数量,隐藏层中的神经元数的依赖性,以及损坏装置的数量和类型。最后,我们描述了使网络更大或调整网络超参数的条件,即使在存在故障设备的情况下也可以提高网络精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号