首页> 外文期刊>Geoderma: An International Journal of Soil Science >Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stemflow along coarse roots
【24h】

Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stemflow along coarse roots

机译:配对地球物理技术改善了对近表面临界区的理解:沿粗根的茎流量的优先路由的可视化

获取原文
获取原文并翻译 | 示例
           

摘要

There is compelling evidence from aboveground observations that trees considerably affect precipitation partitioning through the Critical Zone. However, due to the lack of appropriate methods, the role of root systems (the hidden half of trees) on redistributing precipitation and infiltration into and routing through the soil remains inadequately visualized and understood. Here, we designed a novel experiment to pair two non-invasive geophysical techniques, ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), to trace stemflow through the soil in a forested hillslope after water was released on the trunk of an American beech (Fagus grandifolia Ehrh.) to induce stemflow. We used GPR to locate lateral coarse roots and GPR and ERT together to confirm the wetting areas in response to the non-uniform transport of stemflow. Signal changes between time-lapse geophysical images were used to reveal both the response time and location of stemflow infiltration into and redistribution through the soil. This first known study to investigate the subsurface routing of stemflow by combining GPR and ERT revealed that the belowground funneling of stemflow along laterally oriented coarse roots transported water 2.8 m downslope from the study tree in 30 min after stemflow was initiated. In situ excavation validated the distribution of lateral roots and lateral root-derived preferential flow paths identified in geophysical images, confirming the utility of pairing GPR and ERT to gain insights into the temporal dynamics and spatial distribution of subsurface routing of stemflow. The proposed method visualized and confirmed the funneling effect of roots on belowground water redistribution that contributed to subsurface lateral flow. Pairing GPR and ERT provides a useful combination of geophysical methods to advance our understanding of the complex interactions between plant and soil, such as the role of tree roots in soil hydrological process by revealing areas of funneling in the hidden part of the Critical Zone.
机译:从地上观察结果有令人信服的证据,即树木通过关键区的降水分隔显着影响。然而,由于缺乏适当的方法,根系系统(隐藏的一半)在通过土壤中重新分配降水和渗透和渗透到通过土壤进行再分配和渗透的作用仍然存在不足和理解。在这里,我们设计了一种新的实验,搭配两种非侵入性地球物理技术,接地穿透雷达(GPR)和电阻率断层扫描(ERT),以追踪水在水后备箱上造成森林山坡中的土壤中的茎流量美国山毛榉(Fagus Grandifolia Ehrh)诱导茎流。我们使用GPR定位横向粗根和GPR,并响应于茎流的不均匀传输来确认润湿区域。时间流逝地球物理图像之间的信号变化用于揭示响应时间和地位渗透到通过土壤重新分配的响应时间和位置。该首先已知的研究通过组合GPR和ERT来研究茎流的地下路由显示,在启动茎流后30分钟内从研究树上从研究树上沿着横向取向的粗根的下降漏斗。原位挖掘验证了在地球物理图像中识别的横向根系和横向根系的优先流动路径的分布,确认了配对GPR和ERT的效用,以获得对STOPFLOW地下路由的时间动态和空间分布的洞察力。所提出的方法可视化并确认根源对地下水再分配的漏斗效应,这导致了地下横向流动。配对GPR和ERT提供了地球物理方法的有用组合,以推进我们对植物和土壤之间复杂相互作用的理解,例如树根在土壤水文过程中的作用,通过揭示临界区隐藏部分的漏斗区域。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号