首页> 外文期刊>International Journal of Thermal Sciences >Vortex dynamics-driven heat transfer and flow regime assessment in a turbulent impinging synthetic jet
【24h】

Vortex dynamics-driven heat transfer and flow regime assessment in a turbulent impinging synthetic jet

机译:涡旋动力学驱动的传热和流动调节合成射流的流量调节

获取原文
获取原文并翻译 | 示例
           

摘要

Synthetic jets gained attention in the last decade as a thermal management solution, especially in the electronic cooling community. Under certain conditions, they can remove heat more efficiently than conventional steady jets. In this work we aim to further the knowledge on the fundamental behavior of such flows and their role in heat transfer enhancement. A numerical canonical geometry was developed to de-couple the impinging flow from possible artifacts, such as actuator and geometry resonance. The unsteady flow was assumed in turbulent regime, which was approximated via the Finite Volume Method through the software ANSYS Fluent (TM). The turbulence was modeled using the SST k-omega model, which accurately agreed with experimental data. Synthetic jets generate a train of counter-rotating vortices that, when impinged onto a stationary wall, give rise to secondary vortices that cause a colder fluid downwash into the heated zone. We proposed an alternative definition of the Reynolds number (Re-Gamma) that characterizes the strength of the generated vortices, consequently representing the strength of the jet. We found that to increase the jet thermal efficiency: (1) Having close consecutive vortices is as important as producing strong vortices, and (2) the jet-to-surface distance should be modified such that the vortex finds its peak intensity nearest to the heated wall. Compared to the classic definition of Re-L0 the Stroke Length based Reynolds number (Re-L0) appears as a more suitable definition to establish flow regimes, with the data suggesting Re-L0 approximate to 10, 000 as a threshold where the flow fully transitioned to turbulence. Silva-Llanca et al. (2015) proposed three hypotheses to explain some disagreement found in their data: Turbulent flow at large Re-L0, significant heat losses in the experiments at low Re-L0 and unaccounted three-dimensional effects. We proved that the first two explained their entire data disagreement, thus rendering the third hypothesis unnecessary. (C) 2017 Elsevier Masson SAS. All rights reserved.
机译:在过去的十年中,综合喷气机作为热管理解决方案,特别是在电子冷却界。在某些条件下,它们可以比传统的稳定喷射更有效地去除热量。在这项工作中,我们旨在进一步了解这种流动的基本行为及其在传热增强中的作用。开发了数值规范几何形状以使撞击流从可能的伪影(例如致动器和几何谐振)脱颖而出。在湍流状态下假设不稳定的流动,通过通过软件Ansys流畅(TM)通过有限体积方法近似。使用SST k-Omega模型建模的湍流,该模型精确地同意实验数据。合成射流产生一系列反向旋转涡流,当撞到固定墙上时,引起次级涡流,导致较冷的流体淹没到加热区。我们提出了雷诺数(RE-GAMMA)的替代定义,其表征了所产生的涡流的强度,从而表示射流的强度。我们发现,增加喷射热效率:(1)具有近连续的涡流与产生强烈涡流一样重要,并且(2)跳动到表面距离应被修改,使得涡流找到其最靠近的峰值强度加热墙。与Re-L0的经典定义相比,基于行程长度的雷诺数(RE-L0)看起来更合适的定义来建立流动制度,数据建议将RE-L0近似为10,000作为流量的阈值转变为湍流。 Silva-Llanca等人。 (2015年)提出了三个假设,解释了他们数据中发现的一些分歧:在大的RE-L0中的湍流,在低RE-L0下实验中的显着热损失和未计算的三维效应。我们证明,前两项解释了他们的整个数据分歧,从而使得不需要第三个假设。 (c)2017年Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号