Melting of nanoparticles-enhanced phase-change materials in an enclosure: Effect of hybrid nanoparticles
首页> 外文期刊>International Journal of Mechanical Sciences >Melting of nanoparticles-enhanced phase-change materials in an enclosure: Effect of hybrid nanoparticles
【24h】

Melting of nanoparticles-enhanced phase-change materials in an enclosure: Effect of hybrid nanoparticles

机译:纳米颗粒 - 增强相变材料在外壳中的熔化:杂交纳米粒子的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Highlights?Phase change heat transfer of hybrid nanofluids is addressed.?The natural convection effects are taken into account.?The enthalpy-porosity model for phase change formulation is utilized.?The liquid–solid interface is traced for total nanoparticles volume fraction??=?0–5%.?Hybrid nanoparticles composed of Mg–MgO demonstrate enhanced fusion performance.AbstractThe present paper studies the melting of nanoparticles-enhanced phase-change materials (NEPCM) in a square cavity using the finite element method. The enhancement is based on the hybrid nanofluid strategy. A linearized correlations procedure has been followed to determine the properties of the hybrid nanofluid. The Rayleigh, Prandtl, and Stefan numbers have been fixed at 108, 50, and 0.1, respectively. The left wall is kept at a higher temperatureTh?=?40?°C, the right wall is kept at a lower temperatureTc?=?30?°C, while the horizontal walls are kept adiabatic. The enthalpy-porosity model is used to simulate the melting of the phase-change materials (PCM). The study is governed by tracing the liquid–solid interface by varying the total nanoparticles volume fraction??=?0–5%, and four different sets of models parameters combinations (Nc, Nν)?=?(0,0), (5,18), (18,18), (18,5). The results have shown the consistency of the liquid–solid phase progress with the available experimental results, i.e. the melting process expedites when the enhancement in the thermal conductivity, which is characterized byNc, is much greater than the enhancement of the dynamic viscosity. Compared with the available experimental data, hybrid nanoparticles composed of Mg–MgO demonstrate the best fusion performance.Graphical abstractDisplay Omitted]]>
机译:<![cdata [ 突出显示 杂交纳米流体的相变热传递得到解决。 将自然对流效果考虑在内。 < / ce:list-item> 焓 - 孔隙度使用相变制剂的模型。 液晶界面进行跟踪总纳米粒子体积分数Δ?=?0-5%。 由Mg-MgO组成的混合纳米颗粒表明增强的融合性能。 抽象 本文研究使用有限元法,纳米颗粒增强相变材料(Nepcm)熔化纳米颗粒增强的相变材料(Nepcm)。增强基于杂交纳米流体策略。已经进行了线性化相关程序,以确定杂交纳米流体的性质。 Rayleigh,Prandtl和Stefan号码分别固定在10 8 ,50和0.1。左壁保持在更高的温度 t h ?= 40?°C,右壁是保持在较低温度 t c ?=?30?°C,而水平墙体保持绝热。焓 - 孔隙度模型用于模拟相变材料(PCM)的熔化。该研究通过改变总纳米颗粒体积分数Δ-ce:斜体>Δ=?0-5%,以及四组不同的模型参数组合来治理( nc,nν)?=?(0,0),(5,18),(18,18),(18,5)。结果表明,液体固相进展的一致性与可用的实验结果,即熔化过程加速,当热导率的增强时,其特征在于 nc:斜体>,是远远大于动态粘度的增强。与可用的实验数据相比,由Mg-MgO组成的杂化纳米粒子证明了最佳的融合性能。 图形抽象 显示 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号