...
首页> 外文期刊>International Journal of Mechanical Sciences >Static crushing of aluminium tubes filled with PET foam and a GFRP skeleton. Numerical modelling and multiobjective optimization
【24h】

Static crushing of aluminium tubes filled with PET foam and a GFRP skeleton. Numerical modelling and multiobjective optimization

机译:静电粉碎铝管填充有PET泡沫和GFRP骨架。 数值建模与多目标优化

获取原文
获取原文并翻译 | 示例
           

摘要

This investigation focuses on the multiobjective optimization of a crash box subjected to static loading by using a validated numerical model and an analytical approach. The crash box is made with a unique combination of three materials: an aluminium tube filled with polyethylene terephthalate (PET) foam and a glass-fibre reinforced polymer (GFRP) skeleton. A finite element model was calibrated based on the results obtained in a material testing campaign using appropriate constitutive equations. A J2-plasticity model was used for the material behaviour of the aluminium alloy, and the PET foam was modelled using Deshpande and Fleck's model. Regarding the short fibres GFRP, a Voce plasticity model was fitted to the experimental data. After a successful validation of the finite element model, the filled aluminium tube was subjected to a structural optimization to achieve the best crash performance. Three relevant design variables were selected: the thickness of the outer aluminium cylinder, the thickness of the GFRP and the density of the PET foam, the last being related to the crushing strength of the foam. Given the high computational cost of each finite element model, a multi-adaptive regression splines metamodel was fitted to a large-scale sampling. Optimum pairs were obtained for the absorbed energy, the specific energy absorption, the peak load and the mass of the component; stating the relative contribution of each design variable to the crashworthiness of the crash box and enabling the choice of a balanced optimum design. A semi-empirical model based on Hanssen's interaction formula was calibrated with the data from a validated finite element model. This analytical model was able to reproduce the behaviour of the component over the design region selected for the optimization, and was also used for its optimization with satisfactory results. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本研究专注于使用经过验证的数值模型和分析方法对静载荷进行静电负荷的碰撞框的多目标优化。碰撞盒采用三种材料的独特组合制造:含有聚对苯二甲酸乙二醇酯(PET)泡沫和玻璃纤维增​​强聚合物(GFRP)骨架的铝管。基于使用适当的本构体方程式在材料测试活动中获得的结果进行校准有限元模型。 J2塑性模型用于铝合金的材料行为,使用DeshPande和Fleck模型进行模拟PET泡沫。关于短纤维GFRP,voce可塑性模型适用于实验数据。在成功验证有限元模型之后,将填充的铝管进行结构优化以实现最佳碰撞性能。选择了三种相关的设计变量:外铝圆筒的厚度,GFRP的厚度和宠物泡沫的密度,最后与泡沫的破碎强度有关。鉴于每个有限元模型的高计算成本,适用于大规模采样的多自适应回归花键元模型。获得最佳对,用于吸收能量,特定能量吸收,峰值载荷和组分质量;将每个设计变量的相对贡献陈述到碰撞箱的崩溃并启用均衡的最佳设计。基于Hanssen的交互式公式的半实证模型用来自验证的有限元模型的数据校准。该分析模型能够在选择优化的设计区域上再现组件的行为,并且还用于其优化,结果令人满意。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号