...
首页> 外文期刊>International Journal of Mechanical Sciences >Thermomechanical analysis of hyperelastic thick-walled cylindrical pressure vessels, analytical solutions and FEM
【24h】

Thermomechanical analysis of hyperelastic thick-walled cylindrical pressure vessels, analytical solutions and FEM

机译:高弹性厚壁圆柱形压力容器的热机械分析,分析解决方案和FEM

获取原文
获取原文并翻译 | 示例
           

摘要

In this investigation, employing the multiplicative decomposition of the deformation gradient, both analytically and numerically thermomechanical analysis of a hyperelastic thick-walled cylindrical pressure vessel are presented. The exp exp energy density function due to its excellent agreement with experiments and including exponential terms for compressible and particularly incompressible materials is used to predict the hyperelastic response of elastomers. It is found that the radial and axial stresses are more sensitive to variation of the angular velocity than the hoop stress. Also, the variation of the axial stretch has the most significant effect on the axial and hoop stresses. Moreover, the behavior of the axial stress, for a constant axial stretch 2, depends on the value of 2 whether it is larger than 1 or not, while in the inner radius of the vessel, the hoop stress has the same behavior for various values of the axial stretch. It is concluded that the positive temperature gradient leads to tensile radial stress and compressive hoop and axial stresses in the rotating cylinder, and the increase in the temperature gradient leads to increase in all stress components. The radial and hoop stresses through the wall-thickness are more sensitive to the temperature change than the thermal axial stress. Moreover, increasing the angular velocity makes the cylinder more unstable, while the stability increases with lambda > 1. It is deduced that the more axial stretch in the inner radius of the pressure vessel, the more stable it is. It was shown that the comparison of the results of Finite Element and analytical method shows a good fit as a verification of the analytical solution. This analytical solution can be used either for parametric study (material or geometrical parameters) of the pressure vessels or for design and optimization that involve a large number of simulations where computational cost is a crucial parameter. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在该研究中,介绍了采用变形梯度的乘法分解,介绍了一种超塑性厚壁圆柱形压力容器的分析和数值热机械分析。由于其与实验的优秀协议以及包括可压缩性的指数术语,特别是不可压缩材料的指数术语来预测弹性体的高弹性响应导致的EXP EXP能量密度函数。发现径向和轴向应力对角速度比箍应力更敏感。而且,轴向拉伸的变化对轴向和箍应力具有最显着的影响。此外,对于恒定的轴向拉伸2,轴向应力的行为取决于2大于1,而不是在容器的内半径的同时,箍应力对各种值具有相同的行为轴向伸展。结论是,正温梯度导致旋转圆筒的拉伸径向应力和压缩箍和轴向应力,并且温度梯度的增加导致所有应力成分增加。通过壁厚的径向和箍应力对温度变化比热轴应力更敏感。而且,增加角速度使汽缸更不稳定,而稳定性随λ11的增加而增加。它推导出压力容器内半径的轴向伸展更稳定。结果表明,有限元和分析方法的结果的比较显示了作为分析溶液的验证的良好拟合。该分析解决方案可以用于压力容器的参数研究(材料或几何参数)或用于设计和优化,涉及大量模拟,其中计算成本是关键参数。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号