...
首页> 外文期刊>International Journal of Mechanical Sciences >Modulated ultrasonic elliptical vibration cutting for ductile-regime texturing of brittle materials with 2-D combined resonant and non-resonant vibrations
【24h】

Modulated ultrasonic elliptical vibration cutting for ductile-regime texturing of brittle materials with 2-D combined resonant and non-resonant vibrations

机译:用2-D综合共振和非共振振动的脆性材料的韧度纹理调制超声椭圆振动切割

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, modulated ultrasonic elliptical vibration cutting (modulated UEVC) is proposed to generate microstructured surfaces on brittle materials in ductile-regime. A novel tool is first developed to generate 2-D combined resonant and non-resonant vibrations in a single compact structure. The ultrasonic elliptical vibration is excited at the coupled resonant frequency of 20 kHz to enhance the ductile-to-brittle transition depth, while the simultaneously generated non-resonant modulation motion (up to 2 kHz) is used to adjust the tool center to generate surface structures dynamically. A theoretical model is established to analyze the instantaneous uncut chip thickness in modulated UEVC by considering a more general case of an inclined elliptical vibration trajectory. The analysis indicates that the orientation angle of 135 degrees is optimal to achieve the maximal critical depth-of-cut in ductile-regime cuffing. Experimental results are provided to demonstrate the process capability and to verify the proposed theoretical model. Micro dimple arrays have been successfully generated using the proposed modulated UEVC for a depth-of-cut up to 700 nm in ductile-regime, and an extended depth-of-cut up to 1 mu m with minimal surface damage.
机译:在该研究中,提出了调制的超声波椭圆振动切割(调制UEVC)以在延性制度中产生微结构化表面。首先开发一种新颖的工具,以在单个紧凑的结构中产生2-D组合共振和非共振振动。超声椭圆振动在20kHz的耦合谐振频率下激发激发,以增强延展性到脆性过渡深度,而同时产生的非谐振调制运动(最多2 kHz)用于调整工具中心以产生表面结构动态。建立理论模型,通过考虑更普通的椭圆形振动轨迹,分析调制UEVC中的瞬时未切割芯片厚度。分析表明,135度的方向角是最佳的,以实现延性调节袖口中的最大临界深度。提供实验结果以证明过程能力并验证提出的理论模型。使用所提出的调制UEVC成功地生成了微浊阵列,用于在延性制度中切割深度为700nm,以及延伸深度切割,高达1μm,表面损坏最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号