AbstractA continuum mechanics theory of deformable solids is formulated to account for large deformati'/> Finsler-geometric continuum dynamics and shock compression
首页> 外文期刊>International Journal of Fracture >Finsler-geometric continuum dynamics and shock compression
【24h】

Finsler-geometric continuum dynamics and shock compression

机译:Finsler-Geometric连续体动力学和冲击压缩

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractA continuum mechanics theory of deformable solids is formulated to account for large deformations, nonlinear elasticity, inelastic deformation mechanisms, microstructure changes, and time dependent fields, i.e., dynamics. The theory incorporates notions from Finsler differential geometry, and it provides a diffuse interface description of surfaces associated with microstructure. Mechanisms include phase transitions and inelastic shearing, with phase boundaries and shear planes the associated surfaces. A director or internal state vector of pseudo-Finsler space is viewed as an order parameter. Newly derived in the present work are the governing equations for dynamics, including kinematic relations, balances of momentum and energy, and evolution law(s) for the internal state. Also derived are jump conditions pertinent to shock loading. Metric tensors and volume can vary isotropically with internal state via a conformal transformation. The dynamic theory is applied to describe shock loading of ceramic crystals of boron carbide, accounting for inelastic mechanisms of shear accommodation and densification upon amorphization under high pressure loading. Analytical predictions incorporating the pseudo-Finsler metric demonstrate remarkable agreement with experimental data, without parameter fitting. Additional solutions suggest that dynamic shear strength could be improved significantly in boron-based ceramics by increasing surface energy, decreasing inelastic shear accommodation in softened amorphous bands, and to a lesser extent, by increasing the energy barrier for phase transformation.]]>
机译:<![cdata [ <标题>抽象 ara id =“par1”>制定可变形固体的连续力学理论以算帐对于大变形,非线性弹性,非弹性变形机构,微观结构变化和时间依赖性场,即动态。该理论包含来自Finsler差分几何形状的概念,并且它提供了与微结构相关联的表面的漫反射界面描述。机制包括相变和非弹性剪切,具有相边界和剪切平面相关表面。伪Finsler空间的导演或内部状态向量被视为订单参数。在本作中新衍生的是动态的管理方程,包括运动关系,动量和能量的余额,以及内部国家的进化法。还导出是与冲击载荷相关的跳跃条件。公制张量和体积可以通过保形转化与内部状态相同。动态理论应用于描述碳化硼陶瓷晶体的冲击载荷,占剪切容纳的非弹性机制和高压负载下的致致致密化。掺入伪Finsler度量的分析预测与实验数据展示了显着的协议,没有参数配件。另外的解决方案表明,通过增加表面能量,通过增加相变的能量屏障,通过增加表面能,软化无定形条带中的无弹性剪切容纳以及较小程度,可以在基于硼的陶瓷中显着提高动态剪切强度。 < /摘要>]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号