首页> 外文期刊>Advanced Powder Technology: The internation Journal of the Society of Powder Technology, Japan >Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface
【24h】

Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface

机译:拉伸表面引起的卡森纳米流体流的熵产生的解析模型

获取原文
获取原文并翻译 | 示例
           

摘要

The nano-fluids in view of the fabulous thermal conductivity enhancement have been recognized useful in several industrial and engineering applications. Present study provides an analytical investigation of the fluid flow, heat and mass transfer and entropy generation for the steady laminar non-Newtonian nano-fluid flow induced by a stretching sheet in the presence of velocity slip and convective surface boundary conditions using Optimal Homotopy Analysis Method (OHAM). In contrast to the conventional no-slip condition at the surface, Navier's slip condition is applied. The governing partial differential equations (PDEs) are transformed into highly nonlinear coupled ordinary differential equations (ODEs) consist of the momentum, energy and concentration equations via appropriate similarity transformations. Entropy generation equations, for the first time in this problem, are derived as a function of velocity, temperature and concentration gradients. The current OHAM solution demonstrates very good correlation with those of the previously published studies in the especial cases. The influences of different flow physical parameters on fluid velocity component, temperature distribution and concentration profile as well as the entropy generation number are discussed in details. Increasing the Brownian motion parameter and thermophoresis parameter, Biot number, Reynolds number, and Brinkman number or decreasing the Casson parameter and velocity slip parameter cause an increase in the entropy generation number. (C) 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
机译:考虑到良好的导热性,纳米流体已被认为可用于多种工业和工程应用中。本研究使用最优同伦分析方法,对在存在速度滑移和对流表面边界条件下,拉伸片材诱导的稳定层流非牛顿纳米流体的流动,传热和传质以及熵的产生进行了分析研究。 (OHAM)。与表面上的常规防滑条件相反,应用了Navier的防滑条件。通过适当的相似变换,将控制的偏微分方程(PDE)转换为高度非线性耦合的常微分方程(ODE),该方程由动量,能量和浓度方程组成。在这个问题上,熵生成方程式首次被推导为速度,温度和浓度梯度的函数。在特殊情况下,当前的OHAM解决方案与以前发表的研究显示出很好的相关性。详细讨论了不同流动物理参数对流速分量,温度分布和浓度分布以及熵产生数的影响。增加布朗运动参数和热泳参数,比奥数,雷诺数和布林克曼数或减小卡森参数和速度滑移参数会导致熵产生数的增加。 (C)2015年日本粉末技术学会。由Elsevier B.V.和日本粉末技术学会出版。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号