...
首页> 外文期刊>Information Sciences: An International Journal >Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders
【24h】

Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders

机译:零日恶意软件检测,使用基于深度自动化器的转移生成的对抗网络

获取原文
获取原文并翻译 | 示例
           

摘要

Detecting malicious software (malware) is important for computer security. Among the different types of malware, zero-day malware is problematic because it cannot be removed by antivirus systems. Existing malware detection mechanisms use stored malware characteristics, which hinders detecting zero-day attacks where altered malware is generated to avoid detection by antivirus systems. To detect malware including zero-day attacks robustly, this paper proposes a novel method called transferred deep-convolutional generative adversarial network (tDCGAN), which generates fake malware and learns to distinguish it from real malware. The data generated from a random distribution are similar but not identical to the real data: it includes modified features compared with real data. The detector learns various malware features using real data and modified data generated by the tDCGAN based on a deep autoencoder (DAE), which extracts appropriate features and stabilizes the GAN training. Before training the GAN, the DAE learns malware characteristics, produces general data, and transfers this capacity for stable training of the GAN generator. The trained discriminator passes down the ability to capture malware features to the detector, using transfer learning. We show that tDCGAN achieves 95.74% average classification accuracy which is higher than that of other models and increases the learning stability. It is also the most robust against modeled zero-day attacks compared to others. (C) 2018 Elsevier Inc. All rights reserved.
机译:检测恶意软件(恶意软件)对于计算机安全性很重要。在不同类型的恶意软件中,零日恶意软件是有问题的,因为防病毒系统无法删除。现有恶意软件检测机制使用存储的恶意软件特性,该特性阻碍了检测生成更改恶意软件的零日攻击以避免防病毒系统检测。要检测恶意软件,包括零天攻击稳健,提出了一种称为转移的深卷大生成对冲网络(TDCGAN)的新方法,它产生假恶意软件,并学会将其与真实恶意软件区分开来。从随机分布生成的数据类似但与实际数据相似:它包括与真实数据相比的修改功能。探测器使用真实数据和基于Deep AutoEncoder(DAE)产生的TDCGAN生成的修改数据来了解各种恶意软件功能,这提取适当的功能并稳定GaN培训。在培训GaN之前,DAE学习恶意软件特性,产生一般数据,并传输这种能力进行GaN发生器的稳定训练。训练有素的鉴别器通过转移学习将恶意软件功能捕获恶意软件功能的能力。我们表明TDCGAN实现了95.74%的平均分类精度,高于其他模型的分类准确性,并提高了学习稳定性。与他人相比,它也是对模型零日攻击的最强大。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号