...
首页> 外文期刊>Atmospheric Measurement Techniques >Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
【24h】

Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments

机译:基于oracles 2016和oracles 2017飞机实验的云云辐射效果

获取原文
获取原文并翻译 | 示例
           

摘要

Determining the direct aerosol radiative effect (DARE) of absorbing aerosols above clouds from satellite observations alone is a challenging task, in part because the radiative signal of the aerosol layer is not easily untangled from that of the clouds below. In this study, we use aircraft measurements from the NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) project in the southeastern Atlantic to derive it with as few assumptions as possible. This is accomplished by using spectral irradiance measurements (Solar Spectral Flux Radiometer, SSFR) and aerosol optical depth (AOD) retrievals (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research, 4STAR) during vertical profiles (spirals) that minimize the albedo variability of the underlying cloud field - thus isolating aerosol radiative effects from those of the cloud field below. For two representative cases, we retrieve spectral aerosol single scattering albedo (SSA) and the asymmetry parameter (g) from these profile measurements and calculate DARE given the albedo range measured by SSFR on horizontal legs above clouds. For mid-visible wavelengths, we find SSA values from 0.80 to 0.85 and a significant spectral dependence of g. As the cloud albedo increases, the aerosol increasingly warms the column. The transition from a cooling to a warming top-of-aerosol radiative effect occurs at an albedo value (critical albedo) just above 0.2 in the midvisible wavelength range. In a companion paper, we use the techniques introduced here to generalize our findings to all 2016 and 2017 measurements and parameterize aerosol radiative effects.
机译:确定单独从卫星观察到云层上方吸收气溶胶的直接气溶胶辐射效果(敢于吸收云层是一个具有挑战性的任务,部分原因是气溶胶层的辐射信号不容易地从下面的云中的云层毫无疑问。在这项研究中,我们使用美国国家航空航天局的云层的观察的飞机测量及其在东南大西洋的互动(奥雅乐州)项目,以尽可能少的假设来得出它。这是通过使用光谱辐照度测量(太阳能光谱磁通计,SSFR)和气溶胶光学深度(AOD)检索(用于天空扫描,太阳跟踪大气研究,4Star)的垂直型材(螺旋)来实现的实现,尽量减少Albedo变异性底层云场 - 因此将气溶胶辐射效应与下面的云领域隔离。对于两个代表性病例,我们从这些轮廓测量中检索光谱气溶胶单散射Albedo(SSA)和不对称参数(G),并计算敢于通过SSFR在云层上方水平腿上测量的Albedo范围。对于中可见波长,我们发现0.80至0.85的SSA值和G的显着谱依赖性。随着云玻璃的增加,气溶胶越来越多地温暖柱子。从冷却到升温顶部气溶胶辐射效果的过渡发生在刚性波长范围内的Albedo值(临界反照组)处发生在刚刚高于0.2。在伴侣论文中,我们使用此处介绍的技术将我们的研究结果概括为2016年和2017年测量和参数化气溶胶辐射效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号