【24h】

Numerical prediction of particle erosion of pipe bends

机译:管弯粒子腐蚀的数值预测

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study the Euler/Lagrange approach in combination with a proper turbulence model and full two-way coupling is applied for erosion estimation due to particle conveying along a horizontal to vertical pipe bend. Particle tracking considers both particle translational and rotational motion and all relevant forces such as drag, gravity/buoyancy and transverse lift due to shear and particle rotation were accounted for Lain and Sommerfeld (2012). Moreover, models for turbulent transport of the particles, collisions with rough walls and inter-particle collisions using a stochastic approach are considered Sommerfeld and Lain (2009). In this work, the different transport effects on spherical solid particle erosion in a pipe bend of a pneumatic conveying system are analysed. For describing the combined effect of cutting and deformation erosion the model of Oka et al. (2005) is used. Erosion depth was calculated for two-and four-way coupling and for mono-sized spherical glass beads as well as a size distribution of particles with the same number mean diameter (i.e. 40 mu m). Additionally, particle mass loading was varied in the range from 0.3 to 1.0. The erosion model was validated on the basis of experiments by Mazumder et al. (2008) for a narrow vertical to horizontal pipe system with high conveying velocity. Then a 150 mm pipe system with 5 m horizontal pipe, pipe bend and 5 m vertical pipe with a bulk velocity of 27 m/s was considered for further analysis. As a result inter-particle collisions reduce erosion although the wall collision frequency is enhanced Sommerfeld and Lain (2015); additionally, considering a particle size distribution with the same number mean diameter as mono-sized particles yields much higher erosion depth. Finally, when particle mass loading is increased, bend erosion is reduced due to modifications of particle impact velocity and angle, although wall collision frequency grows. (C) 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
机译:在本研究中,欧拉/拉格朗日方法与适当的湍流模型和全双向耦合结合使用,用于侵蚀估计,由于沿水平到垂直管弯曲的颗粒输送。粒子跟踪考虑粒子平移和旋转运动,并且所有相关的力都是由于剪切和颗粒旋转引起的阻力,重力/浮力和横向升降机被占了Lain和Sommerfeld(2012)。此外,用于湍流运输的模型,颗粒的碰撞和使用随机方法的颗粒碰撞被认为是Sommerfeld和Lain(2009)。在这项工作中,分析了在气动输送系统的管弯中对球形固体颗粒腐蚀的不同运输效果。用于描述切割和变形侵蚀的组合效果Oka等人的模型。 (2005)使用。为双向耦合和单尺寸的球形玻璃珠以及具有相同数平均直径(即40μm)的颗粒的尺寸分布来计算腐蚀深度。另外,颗粒质量负载在0.3至1.0的范围内变化。基于Mazumder等人的实验验证了侵蚀模型。 (2008)对于具有高输送速度的狭窄垂直垂直管道系统。然后,具有5米水平管的150 mm管道系统,管弯和5米垂直管,散装速度为27 m / s,以进一步分析。结果,颗粒间碰撞减少了侵蚀,尽管墙壁碰撞频率是增强的Sommerfeld和Lain(2015);另外,考虑到具有相同数平均直径的粒度分布,因为单尺寸颗粒产生更高的侵蚀深度。最后,当粒子碰撞速度和角度的修改时,弯曲侵蚀时,弯曲侵蚀虽然壁碰撞频率的变化。 (c)2018年日本粉末科技学会。由elsevier b.v发表。和日本粉末科技会。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号