首页> 外文期刊>Acta biomaterialia >Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel
【24h】

Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel

机译:使用光吸收矿物和毫微微第二激光器的外源性矿化; 牙釉质的情况

获取原文
获取原文并翻译 | 示例
           

摘要

A radical new methodology for the exogenous mineralization of hard tissues is demonstrated in the context of laser-biomaterials interaction. The proposed approach is based on the use of femtosecond pulsed lasers (fs) and Fe3+-doped calcium phosphate minerals (specifically in this work fluorapatite powder containing Fe2O3 nanoparticles (NP)). A layer of the synthetic powder is applied to the surface of eroded bovine enamel and is irradiated with a fs laser (1040 nm wavelength, 1 GHz repetition rate, 150 fs pulse duration and 0.4 W average power). The Fe2O3 NPs absorb the light and may act as thermal antennae, dissipating energy to the vicinal mineral phase. Such a photothermal process triggers the sintering and densification of the surrounding calcium phosphate crystals thereby forming a new, dense layer of typically similar to 20 mu m in thickness, which is bonded to the underlying surface of the natural enamel. The dispersed iron oxide NPs, ensure the localization of temperature excursion, minimizing collateral thermal damage to the surrounding natural tissue during laser irradiation. Simulated brushing trials (pH cycle and mechanical force) on the synthetic layer show that the sintered material is more acid resistant than the natural mineral of enamel. Furthermore, nano-indentation confirms that the hardness and Young's modulus of the new layers are significantly more closely matched to enamel than current restorative materials used in clinical dentistry. Although the results presented herein are exemplified in the context of bovine enamel restoration, the methodology may be more widely applicable to human enamel and other hard-tissue regenerative engineering. Crown Copyright (C) 2018 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
机译:在激光生物材料相互作用的背景下,证明了硬组织外源性矿化的根本新方法。该方法基于使用飞秒脉冲激光器(FS)和Fe3 +磷酸钙矿物(特别是在该工作中含有Fe 2 O 3纳米颗粒(NP)的含氟磷灰石粉末)。将一层合成粉末施加到侵蚀的牛搪瓷的表面上,并用FS激光(1040nm波长,1GHz重复率,150fs脉冲持续时间和0.4W平均功率)照射。 Fe2O3 NPS吸收光,可以充当热天线,使能量耗散到大亨矿物相中。这种光热过程触发周围磷酸钙晶体的烧结和致密化,从而形成通常类似于20μm的厚度的新的致密层,其粘合到天然珐琅的下面的表面上。分散的氧化铁NPS,确保温度偏移的定位,在激光照射期间最小化对周围的自然组织的侧支热损伤。在合成层上模拟刷牙试验(pH循环和机械力)表明烧结材料比牙釉质的天然矿物更耐酸。此外,纳米凹口证实,与临床牙科中使用的电流恢复材料相比,新层的硬度和杨氏模量明显更匹配。尽管本文所呈现的结果在牛搪瓷恢复的背景下例示,但是该方法可以更广泛地适用于人牙釉质和其他硬组织再生工程。皇冠版权(c)2018由elsevier有限公司发布代表Acta Magementia Inc.

著录项

  • 来源
    《Acta biomaterialia》 |2018年第2018期|共10页
  • 作者单位

    Univ Leeds Sch Chem &

    Proc Engn Leeds LS2 9JT W Yorkshire England;

    Univ Leeds Leeds Dent Sch Worsley Bldg Leeds LS2 9JT W Yorkshire England;

    Univ St Andrews Sch Phys &

    Astron SUPA St Andrews KY16 9SS Fife Scotland;

    Univ Leeds Sch Chem &

    Proc Engn Leeds LS2 9JT W Yorkshire England;

    Univ St Andrews Sch Phys &

    Astron SUPA St Andrews KY16 9SS Fife Scotland;

    Univ Leeds Leeds Dent Sch Worsley Bldg Leeds LS2 9JT W Yorkshire England;

    Univ St Andrews Sch Phys &

    Astron SUPA St Andrews KY16 9SS Fife Scotland;

    Univ St Andrews Sch Phys &

    Astron SUPA St Andrews KY16 9SS Fife Scotland;

    Univ Leeds Sch Chem &

    Proc Engn Leeds LS2 9JT W Yorkshire England;

    Univ St Andrews Sch Phys &

    Astron SUPA St Andrews KY16 9SS Fife Scotland;

    Univ Leeds Sch Chem &

    Proc Engn Leeds LS2 9JT W Yorkshire England;

    Univ Leeds Leeds Dent Sch Worsley Bldg Leeds LS2 9JT W Yorkshire England;

    Univ Leeds Sch Chem &

    Proc Engn Leeds LS2 9JT W Yorkshire England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 普通生物学;
  • 关键词

    Enamel; Laser sintering; Photothermal; Fluorapatite; Iron oxide nanoparticles;

    机译:搪瓷;激光烧结;光热;氟磷灰石;氧化铁纳米粒子;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号