...
首页> 外文期刊>Computers & Fluids >Numerical modelling of shock wave-boundary layer interaction control by passive wall ventilation
【24h】

Numerical modelling of shock wave-boundary layer interaction control by passive wall ventilation

机译:被动墙体通风的冲击波边界层相互作用控制的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The normal shock wave-boundary layer interaction (SBLI) phenomenon is known to constitute a main factor limiting the aerodynamic performance in many aeronautical applications (transonic wings, helicopter rotor blades, compressor and turbine cascades). The interaction process highly disturbs the boundary layer, often causing flow separation and onset of large scale unsteadiness (e.g. airfoil buffet or supersonic inlet buzz). In certain conditions it may also initiate a dramatic increase of acoustic emission levels (e.g. high-speed impulsive noise). To limit the negative impact of the phenomenon various flow control strategies are implemented, here in a form of a passive control system realised by placing a shallow cavity covered by a perforated plate just beneath the shock. Details of the flow structure obtained by this method are studied numerically. Three distinctive experimental set-ups are considered with the interaction taking place: on a flat wall (transonic nozzle, ONERA), on a convex wall (curved duct, University of Karlsruhe), and on an airfoil (NACA 0012, NASA Langley). Depending on the relative cavity length the ventilation process leads to a transformation of the normal shock topology into: a large.-foot structure (classical, short cavity), a system of oblique waves (extended cavity), or a gradual compression (full-chord perforation). The reference and flow control cases are simulated with the SPARC code (RANS) with Spalart-Allmaras turbulence and Bohning-Doerffer transpiration models. The results are compared with the measurements, emphasizing the streamwise evolution of the boundary layer profiles and integral parameters during the interaction. The prediction capabilities of the solver in terms of the shock wave-boundary layer interaction control by wall ventilation are assessed and presented in details for the investigated range of flow configurations and conditions. (C) 2020 The Authors. Published by Elsevier Ltd.
机译:已知正常冲击波边界层相互作用(SBLI)现象构成限制许多航空应用中的空气动力学性能的主要因素(跨音翅翼,直升机转子叶片,压缩机和涡轮机级联)。相互作用过程高度扰动边界层,通常导致流动分离和大规模不稳定的开始(例如翼型自助式或超音速入口嗡嗡声)。在某些条件下,它还可以启动声发射水平的显着增加(例如,高速脉冲噪声)。为了限制现象的负面影响各种流量控制策略,这里以一种无源控制系统的形式,通过将被穿孔板覆盖的浅腔放置在震动下方来实现。通过该方法获得的流动结构的细节在数值上进行了研究。使用互动进行三种独特的实验组:在平坦的墙壁(横的墙体(横梁喷嘴)上,在凸壁上(弯曲管道,卡尔斯鲁厄大学)以及翼型(NACA 0012,NASA Langley)。取决于相对腔长度,通风过程导致正常冲击拓扑的转变为:大型足部结构(经典,短腔),斜波(延长腔)或逐渐压缩(全 - 和弦穿孔)。使用SPALART-ALLMARAS湍流和BOHNINGING-DOERFFER蒸腾模型模拟参考和流量控制案例。将结果与测量进行比较,强调在交互期间边界层轮廓的流动演变和积分参数。在调查的流动配置和条件的细节中评估和呈现求解墙体通气的冲击波边界层相互作用控制的求解器的预测能力。 (c)2020作者。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号