...
首页> 外文期刊>Chemical Product and Process Modeling >Simulation and Optimization of the Utilization of Triethylene Glycol in a Natural Gas Dehydration Process
【24h】

Simulation and Optimization of the Utilization of Triethylene Glycol in a Natural Gas Dehydration Process

机译:天然气脱水过程中三乙二醇利用的仿真与优化

获取原文
获取原文并翻译 | 示例
           

摘要

The dehydration unit of a plant that processes natural gas uses triethylene glycol (TEG) as an absorbent to remove water from the gas to prevent blockages in pipes due to the formation of hydrates. Although TEG is recyclable, it is usually lost in the system due to vaporization and carryover, which results in economic issues. Therefore, it is necessary to optimize the dehydration process to achieve the allowable water concentration in the gas, to minimize the use of energy, and to minimize the loss of TEG. Experimental set was designed using Design Expert software by utilising data from Farashband gas processing plant, Iran and subsequently, fed to ASPEN HYSYS to construct and simulate the dehydration process. The chosen affecting parameters to the process were the (1) lean glycol circulation rate, (2) the temperature of the reboiler, and (3) the number of trays in the contactor column. Whereas, the response parameters included the (1) amount of glycol that was lost, (2) the reboiler duty, (3) the concentration of water in the dry gas, and the (4) temperature at which the hydrate formed. Then, these data were optimized using the response surface methodology (RSM). The results indicated that the optimum conditions within the experimental range conducted in this study of process parameters chosen, of the lean glycol circulation rate, the temperature of the reboiler, and the number of trays in the glycol contactor column for the gas dehydration process for the plant were 3944 kg/hr, 180 °C, and three trays, respectively.
机译:处理天然气的植物的脱水单元使用三甘醇(TEG)作为吸收剂以除去来自气体的水,以防止由于水合物的形成而在管中堵塞。虽然TEG是可回收的,但由于蒸发和携带,它通常在系统中丢失,这导致经济问题。因此,有必要优化脱水过程以实现气体中的允许水浓度,以最小化能量的使用,并最大限度地减少TEG的损失。通过利用Farashband天然气加工厂,伊朗和随后的数据来使用设计专家软件设计了实验集,送入了Aspen Hysys以构建和模拟脱水过程。所选择的影响到该方法的参数是(1)贫二醇循环速率,(2)再沸器的温度,以及(3)接触器柱中的托盘的数量。虽然,响应参数包括(1)丢失的二醇量,(2)再沸器占性,(3)干气中的水浓度,以及所形成的水合物的(4)温度。然后,使用响应表面方法(RSM)进行这些数据。结果表明,在本研究参数中选择的实验范围内的最佳条件,其选择参数,稀乙二醇循环速率,再沸器的温度以及乙二醇接触器柱中的托盘的数量,用于气体脱水过程植物分别为3944千克/小时,180°C和三个托盘。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号